期刊文献+

区间值逻辑柔性化的研究

Flexibility of the Interval-valued Logics
在线阅读 下载PDF
导出
摘要 蕴涵是研究逻辑学的重点和难点,本文运用泛逻辑学的理论,把广义相关性引入到区间值逻辑中,重新定义了区间值逻辑的补、交、并运算,给出一种区间蕴涵的定义形式,使区间值逻辑运算模型连续可变,进一步证明了区间蕴涵的正则性、单调性和伴随性。以全新的观点给出区间值逻辑在h几个特殊点处的交、并和蕴涵运算模型。这对深入研究区间值逻辑柔性化,具有重要的意义。 The study of implication operator is important and difficult in the study of logic. In this paper, using the principle of the universal logics, generalized correlation is introduced into Interval-valued Logics, the intersection, u- nion and complement operation are redefined, and a new kind definition of the Interval-implication is given. The oper- ation models of the Interval-valued Logics are changeable continuity. Regularity and monotonicity of interval-implica- tion are proved, the property of adjoint pair of interval intersection and implication is also proved. The operation models of the Interval-Logics are firstly given for intersection, union and implication in the special points of h. It is very important to the further study of making Interval-Logics flexible.
出处 《计算机科学》 CSCD 北大核心 2005年第7期142-144,155,共4页 Computer Science
基金 国家自然科学基金(No.60273087) 北京自然科学基金(No.4032009)
关键词 区间值 柔性化 运算模型 广义相关性 泛逻辑学 定义形式 蕴涵 新定义 并运算 正则性 单调性 特殊点 研究区 Uncertain reasoning Generalized correlation Flexible logic Implication operator Interval-valued logic
  • 相关文献

参考文献22

  • 1Zadeh L A. Outline of a New Approach to the Analysis of Systems and Decision Processes. IEEE Trans Systems Man Cybernet,1973,3:28~44
  • 2Wang G J. On the Logic Foundation of Fuzzy Reasoning. Information Sciences, 1999,117: 47~88
  • 3Pawley Z. Rough Sets. International Journal of Computer and Information Sciences, 1982,11: 341~356
  • 4Pawlak Z. Rough Sets-Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers. Dordrecht, 1991
  • 5Zadeh L A. Fuzzy sets. Information Control, 1965,8:338-353
  • 6Bundy A. Incidence calculus: a mechanism for probabilistic reasoning. Journal of Automated Reasoning, 1985,1:263~283
  • 7Bundy A. Correctness criteria of some algorithms for uncertain reasoning using incidence calculus. Journal of Automated Reasoning, 1986,2:109~126
  • 8Wong S K M, Wang L S, Yao Y Y. On Modeling Uncertainty with Interval Structures. Intl. Journal of Computational Intelligence, 1995,11(2) :406~426
  • 9Atanassov K. Intuitionstic fuzzy sets [J]. Fuzzy Sets and Systems, 1986,20:86~96
  • 10Atanassov K, Gargov G. Interval valued intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1989, 31:343~351

二级参考文献43

共引文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部