期刊文献+

辛约化法求解Hamiltonian矩阵特征问题

Symplectic square reduced method for solving Hamiltonian matrix eigenvalue
在线阅读 下载PDF
导出
摘要 特征值问题具有貌似简单的提法,而且其基本理论多年来已为人们所熟知,然而欲求其精确解就会遇到各种挑战性问题。针对有着广泛应用前景的Hamiltonian矩阵特征问题,在Hamiltonian矩阵约化过程中,采用了辛相似变换,利用辛约化法求解了Hamiltonian矩阵特征值问题,其Hamilton结构得到了充分保证,这样从根本上确保了特征值的正确性,该文提供的辛方法具有较强的有效性和可靠性。 To solve the exact solution of the algebraic eigenvalue problem is a difficulty although the problem seems very simple and the basic principle is familiar to scientists. This paper deals with the eigenvalue problem of the Hamiltonian matrix which is widely studied in many fields. The symplectic square reduced method is established to solve the Hamiltonian matrix eigenvalue in the course of reducing the Hamiltonian matrix. This method works with symplectic similarity transformation in which the structure of the Hamiltonian matrices is preserved. The presented algorithm has preferable validity and stability.
作者 夏鹭平
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第7期792-794,828,共4页 Journal of Hefei University of Technology:Natural Science
基金 安徽省自然科学基金资助项目(050440506) 安徽省教育厅自然科学重点科研计划资助项目(2004kj090zd)
关键词 辛约化法 Hamiltonian矩阵 辛相似变换 特征值 <Keyword>symplectic square reduced method Hamiltonian matrix symplectic similarity transformation eigenvalue
  • 相关文献

参考文献16

  • 1Wilkinson J H.The algebraic eigenvalue problem[M].Oxford: Oxford University Press, 1965.
  • 2Bunse A G.An analysis of the HR algorithm for computing the eigenvalues of a matrix[J].Linear Algebra and Its Applications, 1984,35:155-173.
  • 3Feng K,Wang D L.Symplectic difference schemes for Hamiltonian system in general symplectic structures[J].Journal of Computational Mathematics,1991,9(1):96-96.
  • 4Kleinman D. On an iterative technique for Riccati equation computations[J].IEEE Transactions on Automatic Control, 1968, AC-13:114-115.
  • 5Paige C,Van Loan C. A schur decomposition for Hamiltonian matrices[J]. Linear Algebra and Its Applications,1981,41,11-32.
  • 6Lin W W. A new method for computing the closed loop eigenvalue of a discrete time algebraic Riccati equation[J]. Linear Algebra and Its Applications, 1987,96:157-180.
  • 7廖新浩,刘林.Hamilton系统数值计算的新方法[J].天文学进展,1996,14(1):3-11. 被引量:10
  • 8Lancaster P,Rodman L. The algebraic Riccati equation[M].Oxford:Oxford University Press,1995.
  • 9Bunse A G, Mehrmann V. A symplectic QR-like algorithm for the solution of the real algebraic Riccati equation[J].IEEE Transactions on Automatic Control,1986,AC-31:1 104-1 113.
  • 10Zhong W X,Zhong X X.On the adjoint symplectic inverse substitution method for main eigensolutions of a large Hamiltonian matrix[J].Journal of System Engineering, 1991,1:41-50.

二级参考文献35

  • 1廖新浩,刘林.一种改进的显式辛算法[J].计算物理,1994,11(2):212-218. 被引量:5
  • 2刘林,廖新浩,赵长印,王昌彬.辛算法在动力天文中的应用(Ⅲ)[J].天文学报,1994,35(1):51-66. 被引量:14
  • 3赵长印,王昌彬,黄天衣.对称多步法的适用范围[J].紫金山天文台台刊,1995,14(1):20-23. 被引量:1
  • 4钟万勰,计算结构力学及其应用,1992年,19卷,3期,227页
  • 5Zhong W X,J System Engineering,1991年,1期,41页
  • 6Lin W W,Linear Algebra Its Applications,1987年,96期,157页
  • 7Van Loan C,Linear Algebra Its Applications,1984年,61期,233页
  • 8Golub G H,Matrix Computations(第3版),1996年
  • 9Bunsegerstner A,Method Oper Res,1989年,58卷,339页
  • 10Bunsegerstner A,IEEE Trans Automat Control,1986年,31卷,1104页

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部