期刊文献+

用Bethe Ansatz方法求解本征值(英文)

The solving eigenvalue with the coordinate Bethe Ansatz
在线阅读 下载PDF
导出
摘要 通过对SU(n)Hubbard可积模型的研究,求出该模型的能量本征值.用可积模型中的坐标BetheAnsatz的方法,首先由薛定谔方程求得能量的本征方程,设定波函数的具体形式,求出本征能量.SU(n)Hubbard可积模型的本征能量可通过BetheAnsatz的方法求得. The eigenvalue is obtained in studying the SU (n) Hubbard model. The eigenvalue is solved with coordinate Bethe Ansatz method in integrable. The first, the eigenvalue equation is formed according to Schrdinger equation. The second, the eigenvalue is worked out when the wave function is given. The eigenvalue of one-particle, two-particle and N0-particle is worked out. The eigenvalue of the SU (n) Hubbard model is obtained with coordinate Bethe Ansatz.The Bethe Ansatz (BA) is the useful method to solve the eigenvalue .In this paper, the eigenvalue of the Hamiltonian is given by using the coordinate the BA.
出处 《纺织高校基础科学学报》 CAS 2005年第2期168-171,共4页 Basic Sciences Journal of Textile Universities
基金 SupportedbyNationalScienceFoundationofChina(40375010,60278019)
关键词 能量本征值 SCHROEDINGER方程 坐标Bethe ANSATZ eigenvalue Schrdinger equation coordinate BA
  • 相关文献

参考文献6

  • 1ANDERSON P W. Basic notions of condensed matter physics[J]. Phys Rev, 1959,115:2-13.
  • 2HUBBARD J. Electron correlations in narrow energy bands(Part I )[J]. Proc Royal Soc London Ser, 1963,A276:238-257.
  • 3HUBBARD J. Electron correlations in narrow energy bands(Part II)[J]. Proc Royal Soc London Ser, 1964,A277:237-255.
  • 4BETHE H A.The theory of metals.I. Specific values and function of linear atomic chains[J]. Z Phy,1931,71:26-205.
  • 5YANG C N. Some exact results for the many-body problem in one dimension with repulsive delta-function interaction[J]. Phys Rev Lett, 1967,19(23):1312-1315.
  • 6PENG D T,YUE R H. Yang-Baxter equation for the R-matrix of the 1D SU(n) Hubbard model[J].Phys A:Math Gen, 2002,35:6985-6993.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部