摘要
通过对SU(n)Hubbard可积模型的研究,求出该模型的能量本征值.用可积模型中的坐标BetheAnsatz的方法,首先由薛定谔方程求得能量的本征方程,设定波函数的具体形式,求出本征能量.SU(n)Hubbard可积模型的本征能量可通过BetheAnsatz的方法求得.
The eigenvalue is obtained in studying the SU (n) Hubbard model. The eigenvalue is solved with coordinate Bethe Ansatz method in integrable. The first, the eigenvalue equation is formed according to Schrdinger equation. The second, the eigenvalue is worked out when the wave function is given. The eigenvalue of one-particle, two-particle and N0-particle is worked out. The eigenvalue of the SU (n) Hubbard model is obtained with coordinate Bethe Ansatz.The Bethe Ansatz (BA) is the useful method to solve the eigenvalue .In this paper, the eigenvalue of the Hamiltonian is given by using the coordinate the BA.
出处
《纺织高校基础科学学报》
CAS
2005年第2期168-171,共4页
Basic Sciences Journal of Textile Universities
基金
SupportedbyNationalScienceFoundationofChina(40375010,60278019)