期刊文献+

氧化亚铁硫杆菌作用下形成的黄钾铁矾的SEM研究 被引量:50

SEM Study on Jarosite Mediated by Thiobacillus ferrooxidans
在线阅读 下载PDF
导出
摘要 黄钾铁矾是金属硫化物在酸性条件下氧化形成的主要次生矿物。很多研究表明,金属硫化物矿区广泛发育的氧化亚铁硫杆菌会影响金属硫化物的氧化分解和次生矿物的形成。为讨论氧化亚铁硫杆菌在黄钾铁矾形成过程中的作用,设计了两组平行实验制备黄钾铁矾:一种采用化学方法合成黄钾铁矾,另一种在相同条件下接种氧化亚铁硫杆菌合成黄钾铁矾。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和能谱分析仪(EDS)等技术对两种实验获得的黄钾铁矾进行定性分析和形貌观察。结果表明:在氧化亚铁硫杆菌充分繁殖的条件下,细菌的参与更利于黄钾铁矾的形成;Fe2+的氧化速率可能是影响黄钾铁矾结晶的主要因素,氧化亚铁硫杆菌通过提高Fe3+的供应速度促使黄钾铁矾快速结晶,细菌作用下形成的黄钾铁矾结晶程度好于纯化学方法制备的黄钾铁矾。 Jarosite is a major secondary mineral formed in acid supergene environment by oxidation of metal sulphide. Thiobacillus ferrooxidans occurring extensively in metal sulphide ore district has an important effect on oxidation of metal sulphide and formation of secondary minerals. In order to discuss the effect of Thiobacillus ferrooxidans on the formation of jarosite, two parallel experiments were conducted for preparation of jarosite: chemical experiment and biologically mediated experiment. The compositions and morphological features of these two groups of jarosites have been investigated by means of XRD, SEM and EDS. The study indicates that full propagation of Thiobacillus ferrooxidans in the solution is beneficial to the formation of jarosite. The oxidation rate of Fe 2+ in the solution is probably the main factor that affects crystallization of jarosite. Thiobacillus ferrooxidans induces a rapid crystallization of jarosite by increasing the supply rate of Fe 3+ on the mineral surface. Jarosite mediated by Thiobacillus ferrooxidans has a better crystalline form than that synthesized by chemical method.
出处 《高校地质学报》 CAS CSCD 北大核心 2005年第2期234-238,共5页 Geological Journal of China Universities
基金 国家自然科学基金项目(49673187)资助
关键词 氧化亚铁硫杆菌 黄钾铁矾 扫描电镜 形貌特征 成分分析 Thiobacillus ferrooxidans jarosite SEM morphological features compositional ayslysis
  • 相关文献

参考文献23

  • 1Akai J, Akai K, Ito M, et al. 1999. Biologically induced iron ore at Gunma iron mine, Japan. American Mineralogist, 84:171-182.
  • 2Baron D, Palmer C D. 1996 . Solubility of jarosite at 4-35℃. Geochimica et Cosmochimica Acta, 60(2):185-195.
  • 3Barron J L, Luecking D R. 1990. Growth and maintenance of Thiobacillus ferrooxidans cells. Applied and Environmental Microbiology, 56(9):2801-2806.
  • 4Bigham J M, Schwertmann U, Pfab G . 1996. Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage. Applied Geochemistry, 11:845-849.
  • 5Crundwell F K. 2003. How do bacteria interact with minerals? Hydrometallurgy, 71:75-81.
  • 6Colmer A R, Temple K T, Hinkle M E. 1950. An iron-oxidizing bacterium from the acid mine drainage of some bituminous coal mines. Journal of Bacteriology ,59 :317-328.
  • 7Dutrizac J E, Kaiman S. 1976. Synthesis and properties of jarosite-type compounds. The Canadian Mineralogist, 14:151-158.
  • 8Grishin S I, Bigham J M, Tuovinen O H . 1988. Characterization of jarosite formed upon bacterial oxidation of ferrous sulfate in a packed-bed reactor. Applied and Environmental Miorobiology, 54(12):3101-3106.
  • 9Jensen A B, Webb C. 1995. Ferrous sulphate oxidation using Thiobacillus ferrooxidans: a Review. Process Biochemistry, 30(3): 225-236.
  • 10Lacey D T and Lawson F. 1970. Kinetics of the liquid-phase oxidation of acid ferrous sulfate by the bacterium Thiobacillus ferrooxidans. Biotechnology and Bioengineering, 12:29-50.

二级参考文献21

  • 1Lottermoser B G. Mine wastes: Characterization,treatment and environmental impacts. SpringerVerlag Belin, 2003: 83-142.
  • 2Johnson D B. Microbiology of acidic mine pollution and its bioremediation. International biode-terioration and biodegradation, 1996,37 (3-4 ):238.
  • 3Schultz-lam S, Fortin D, Davis B Set al. Mineralization of bacterial surface. Chemical Geology,1996,132 : 171-182.
  • 4Edwards K J, Bond P L, Dmschel G K, et al.Geochemical and biological aspects of sulfide mineral dissolution: Lessons from Iron Mountain, California. Chemical Geology, 2000,169:383-397.
  • 5Santelli C M, Welch S A, Westrich H R, et al.The effect of Fe-oxidizing bacteria on Fe-silicate mineral dissolution. Chemical Geology, 2001,180:99-115.
  • 6Nordstrom D K, Southam G. Geomicrobiology of sulfide mineral oxidation. Reviews in Mineralogy ,1997,35:361-390.
  • 7Crundwell F K. How do bacteria interact with minerals? Hydrometallurgy, 2003,71 : 75-81.
  • 8Rodriguze Y, Ballester A, B1fzquez M L, et al.New information on the pyrite bide,aching mechanism at low and high temperature. Hydrometallurgy, 2003a, 71:37-46.
  • 9Rodriguze Y, Ballester A, B16zquez M L, et al.New information on the chalcopyrite bioleaching mechanism at low and high temperature.Hydrometallurgy, 2003b, 71 : 47-56.
  • 10Rcxtfiguze Y, Ballester A, B1fzquez M L, et al.New information on the sphalerite bioleaching mechanism at low and high temperature.Hydrometallurgy, 2003c, 71 : 57-66.

共引文献22

同被引文献513

引证文献50

二级引证文献256

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部