期刊文献+

一种基于能量分布特性的小波去噪算法

A New De-Noising Algorithm of Wavelet Based on Characteristic of Energy Distribution
在线阅读 下载PDF
导出
摘要 目前对于保持图像细节、滤除噪声,普遍采用空间域、频率域滤波.在空间域滤波,尽管能够有效地限制噪声,但是同时模糊了图像细节.因此,在频率域滤波的方法越来越引起关注.在小波频率域中,我们常常采用Donoho阈值方法处理小波系数来以此去除噪声,保留图像细节,然而该方法同时也一定程度上模糊了图像细节.小波变换具有良好的时、频局部化性能,图像经过多级小波变换得到不同分辨率的子图个数,各高频子图上的小波系数具有相似的能量统计分布特性.也就是说随着分解层数的增加,分辨率最低子图的小波系数范围最大,而高分辨率子图上大部分数值接近于0.因此,该文提出了一种新的基于能量分布特性的小波去噪算法(WCED). <Abstrcat> For keeping image detail and constraining image noise, traditional filters are mostly those in space domain or frequency domain. In space domain, we can more effectively constrain noise while it blurs image details. So, the filters in frequency domain have attracted more and more attention. In wavelet frequency domain, image frequency can be effectively decomposed and then noise can be restricted. Traditionally, we make use of Donoho's threshold to de-noise and preserve image details with regard to wavelet coefficients. However, which also results in blur image details etc. It is known that wavelet transformation has good performance in local time domain and frequency domain. Sub-images are acquired by multilevel wavelet transformations, then we can find that wavelet coefficients own similarity of energy distribution in high frequency sub-images, that is to say, wavetlet coefficients distribute much wider through increasing scale of decomposition. Sub-images of lower resolution whose wavelet coefficients own wider range, sub-images of higher resolution whose wavelet coefficients own narrower range. Therefore, we present a new wavelet de-noising algorithm based on characteristic of energy distribution.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2005年第3期251-254,共4页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 江西省自然科学基金资助项目(0412008).
关键词 去噪算法 能量 频率域滤波 图像细节 小波系数 统计分布特性 小波变换 高分辨率 空间域 子图 噪声 局部化 阈值 接近 数值 signal de-noising wavelet transformation characteristic of energy distribution
  • 相关文献

参考文献3

二级参考文献14

  • 1Huang J. Statistics of natural images and models[ D]. PhD thesis, Brown University, 2000.
  • 2Simoncelli E, Olshausen B. Natural image statistics and neural representation [ J]. Annual Review of Neuroscience, 2001, 5 (24): 1 193- 1 216.
  • 3Ray S, Mallick B K.A Bayesian transformation model for wavelets[J] .IEEE Trans action. On Image Processing, 2003, 12(12): 1 512 -1521.
  • 4Figueiredo M A T, Nowak R D. Wavelet- based image estimation: an empiric al Bayes approach using Jeffrey's noninformative prior[J].IEEE Trans action. On Image Processing, 2001,11(2): 1 331 - 1 340.
  • 5Portilla J, Strela V, Wainwright M, et al. Adaptive Wiener denoising using a Gaussian scale mixture model[ J]. Procesing In conference Image processing, 2001,65:327 - 331.
  • 6Aleksandra P, Wilfried P. Multiscale statistical image models and Bayesian methods[J] .SPIE Conference Octorber,2003,60:128 - 130.
  • 7Liu J, Moulin P. Information theoretic analysis of interscal and intrascal dependencies between image dependencies between image wavelet coefficients[J] .IEEE Trans. on Image Processing, 2001, 10(10):1 647- 1 658.
  • 8Levent S, Selesnick I W. Bivariate shrinkage functions for wavelet based denoising exploiting interscale dependency[ J]. IEEE Trans. Signal Processing, 2002, 12(50): 2 744 - 2 756.
  • 9Javier P, Vasily S, Wainwright M, etc. Image denoising using scale mixtures of Gaussians in the wavelet domain[J]. IEEE Trans. On Image Processing, 2003, 11(12): 1 338-1 351.
  • 10Javier P, Simoncelli E. Image restoration using Gaussian scale mixtures in the wavelet domain[ J ]. Processing Int Conference Image Processing, 2003,30: 68 - 72.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部