期刊文献+

遗传程序设计算法中选择调整参数的光滑拟合方法

Smooth fitting with selecting the regularization parameter under the genetic programming algorithm
在线阅读 下载PDF
导出
摘要 对遗传程序设计(GP)算法中的适应度评价函数光滑拟合问题进行了研究,结合LAM(LinearAssociationMemory)和HJ(Hook和Jeevs)两种方法,估计GP树数值权值,以减少GP树适应度值评价的计算代价。提出了一种选择调整参数的新方法,同时,给出了一个数学例子,并与广义交叉实验B—样条函数仿真比较验证。 The smooth fitting problem of fitness evalutation function under the genetic programming(GP) algorithm was discussed. To reduce the computational cost required for evaluating the fitness value of GP trees, numerical weights of GP trees were estimated by adopting both linear associative memories (LAM) and the Hook and Jeeves (HJ) method. The quality of smooth fitting is critically dependent on the choice of the regularization parameter. So, a novel method for choosing the regularization parameter was presented. One numerical example was given with the comparison of generalized cross-validation (GCV) B-splines.
出处 《计算机应用》 CSCD 北大核心 2005年第6期1330-1333,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60373083)
关键词 遗传程序设计(GP) 光滑拟合 调整参数 Genetic Programming(GP) smooth fitting regularization parameter
  • 相关文献

参考文献13

  • 1LIN JC, DURAND DM. Weighted linear associative memory approach to nonlinear parameter estimation. Journal of Optimization Theory and Applications[ J]. 1996, 90(1): 139 - 159.
  • 2YEUN YS, LEE KH, YANG YS. Function approximations by cou pling neural networks and genetic programming trees with oblique decision trees[ J]. Artificial Intelligence in Engineering, 1999, 13(2): 223 - 239.
  • 3YEUN YS, SU JC, YANG YS. Function approximation by superim posing genetic programming trees: with application to engineering problems[ J]. Information Sciences, 2000, 122, (2 - 4).
  • 4HOOKE R, JEEVES TA. Direct search solution of numerical and statistical problems[ J]. Journal of ACM, 2001, 8(4): 212 -229.
  • 5MICHAEL GP. Optimization methods for use in computer-aided ship design[ J]. in: Proceedings of the first ship technology and research (STAR) symposium. The Society of Naval Architects and Marine Engineers, 2001, 13:1 -27.
  • 6MOROZOV VA . Regularization Methods for Ⅲ - Posed Problems [M]. Boca Raton: CRC Press, 2001.
  • 7MOROZOV VA . Methods for Solving Incorrectly Posed Problems [M]. New York: Springer Press, 1984.
  • 8CRAVEN P, WAHBA G. Smoothing noisy data with spline functions[ J]. Numerische Mathematik, 2001, 31: 377 - 403.
  • 9COLLI-FRANZONE P, GUERRI L, TACCARDI B, et al. Finite element approximation of regularized solutions of the inverse potential problem of electrocardiography and applications to experimental data [Z]. alcolo, 2001, XXII (1).
  • 10HANSEN PC. Analysis of discrete ill-posed problems by means of the L-curve[J]. SIAM Review. 2002,34:561 -580.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部