期刊文献+

基于矩特征和证据理论的离线签名识别 被引量:2

Off-line Signature Recognition Based on Moments and Evidence Theory
在线阅读 下载PDF
导出
摘要 论文首先对几种矩特征在离线签名识别中的性能进行了比较,在此基础上选取矩和一种基于中心矩的形状描述子(SDBCM)作为签名图象的形状特征,据此构造了两个距离权重k-NN分类器对签名图象进行初步识别。然后将两个k-NN分类器的度量层输出作为证据,用一种改进的证据理论合成公式对其进行融合得到最终识别结果。实验结果表明,新的识别方法是有效的。 After comparing the performance of several moments in off-line signature recognition,the paper selects the Zernike moments and a shape descriptor based on central moments as the shape features,which feed in two classifiers to implement the elementary recognition.Results of the classifiers in the measurement level are then fused,using an improved combined method based on D-S theory which achieves the final recognition results.Experimental results show that the new recognition method is effective.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第18期57-60,共4页 Computer Engineering and Applications
关键词 离线签名识别 矩特征 k—NN分类器 证据理论 off-line signature recognition,moments,K-NN classifier,evidence theory
  • 相关文献

参考文献12

  • 1M Ammar, Y Yoshida, T Fukumura.Description of Signature Images and Its Application to Their Classification[C].In:the 9th International Conference on Pattern Recognition,1988:23-36.
  • 2M Ammar,Y Yoshida,T Fukumura.Structural Description and Classification fo Signature Images[J].Pattem Recognition, 1990;23:697-710.
  • 3Pavlidis I, Mavuduru R.Papanikolopoulos N.Signature Identification Through the Use of Deformable structures[J].Signal Processing,1998,71(2):187-201.
  • 4Wang D C C,Vagnucci A H.Gradient Inverse Weighting Smoothing Schema and the Evaluation of Its Performance[J].Computer Graphics and Image Processing, 1981;15.
  • 5Ridler T W,Calvard S.Picture Thresholding Using an Iterative Selection Method[J].IEEE Trans on System,Man and Cybernetics,SMC-8, 1978;630-632.
  • 6叶芗芸,戚飞虎,吴健渊,许磊.文本图像的快速二值化方法[J].红外与毫米波学报,1997,16(5):344-356. 被引量:34
  • 7苏环 李弼程.四种矩描述子在形状检索中的性能比较[J].中国图像图形学报,2003,:403-406.
  • 8Hu M K.Visual Pattern Recognition by Moment Invariants[J].IRE Transactions on Information Theory, 1962;IT-8:179-187.
  • 9Teague M R.Image Analysis Via the General Theory of Moments[J].Journal of the Optical Society of America. 1980:70:920-930.
  • 10S A Dudani.The Distance-Weighted K-nearest-neighbor Rule[J].IEEE Trans of Sys Man Cyber,1976;16:325-327.

二级参考文献3

共引文献234

同被引文献20

  • 1张磊,李弼程,刘安斐.基于多特征和证据理论离线签名识别[J].计算机工程与应用,2007,43(8):234-237. 被引量:4
  • 2李京兵,黄席樾.一种基于DWT抗几何攻击数字水印鲁棒算法[J].计算机仿真,2007,24(3):303-306. 被引量:20
  • 3DIMAURO G, IMPEDOVO S, LUCCHESE M G, et al. Recent ad- vancement in automatic signature verification [ C ]//Proc of the 9th International Workshop on Frontiers in Handwriting Recognition. Washingten DC : IEEE Computer Society, 2004 : 179-184.
  • 4BAJAJ R, CHAUDHARY S. Signature verification using multiple neu- ral classifiers [ J], Pattern Recognition, 1997,30( 1 ) : 1-7.
  • 5GURU D S, PRAKASH H N. On-line signature verification and recog- nition: an approach based on symbolic representation [J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2009,31 (6) : 1059-1073.
  • 6Chalechale A, Naghdy G, Pramaratne P.Arabic/persian cursive signature recognition and verification using line segment distribution[C]//Proc of Int Conf on Information and Com- munication Technologies: From Theory to Applications, 2004 : 475-476.
  • 7Frias-Martinez E, Sanchez A, Velez J.Support vector machines versus multi-layer perceptrons for efficient off-line signature recognition[J].Engineering Applications of Artificial Intelli- gence, 2006, 19 : 693-704.
  • 8Velez J, Sanchez A, Moreno B, et al.Fuzzy shape-memory snakes for the automatic off-line signature verification problem[J].Fuzzy Sets and Systems,2009,160(2):182-197.
  • 9Lv Hairong, Wang Wenyuan, Chong Wang, et al.Off-line Chinese signature verification based on support vector machines[J]. Pattern Recognition Letters,2005,26:2390-2399.
  • 10Lin Jun,Li Jie-gu.Off-line Chinese signature verification[C]// International Conference on Image Processing.[S.1.]: IEEE, 1996,1:205-207.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部