期刊文献+

UKF滤波方法及其在车辆导航状态估计中的应用(英文) 被引量:14

Application of Unscented Kalman Filter in State Estimation for Land Vehicle Navigation System
在线阅读 下载PDF
导出
摘要 在车载导航系统中,通常采用EKF作为状态估计方法提高导航的精度。由于EKF进行非线性估计存在一些缺陷,因此将其用于导航系统的非线性估计时,存在估计误差,从而影响导航系统的精度。为了获得更高的导航精度,将一种新的滤波方法—UKF方法用于车载导航系统的状态估计中。对一个车载DR/GPS组合系统,将EKF和UKF方法分别进行了滤波仿真。仿真结果表明:在车载导航状态估计中,UKF方法优于EKF方法。 In a land vehicle navigation system, generally the Extended Kalman Filter (EKF) is as a state estimation method to improve the accuracy of navigation. However, as defects of the EKF in nonlinear estimation, there exists estimated error, which affects the accuracy of the navigation system, when it is adopted in nonlinear estimation of a navigation system. In order to yield the higher accuracy of navigation, a novel method-Unscented Kalman Filter (UKF) was employed in state estimation for a land vehicle navigation system. For a land vehicle DR/GPS navigation system, the EKF and UKF are compared through simulation. Simulation results show that the UKF is superior to the EKF in state estimation for a land vehicle navigation system.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2005年第6期1456-1458,共3页 Journal of System Simulation
  • 相关文献

参考文献1

二级参考文献4

共引文献3

同被引文献119

引证文献14

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部