期刊文献+

基于混合密度因子的路面破损自动识别研究 被引量:3

Research on the Automatic Pavement Distress Recognition Based on Synthetical Distress Density Factor
在线阅读 下载PDF
导出
摘要 路面破损分类成为限制路面破损自动检测的普及和发展的重要因素。本文在已提出的破损密度因子算法的基础上,进一步设计出了混合密度因子,得到一种基于图像子块分布特征的路面破损识别算法。通过仿真,验证了其对常见的5种路面破损类型进行分类的可行性,并选择了另外一种路面破损分类算法来进行神经网络仿真对比。神经网络的训练样本是两组,测试样本也是两组,进行了四次仿真对比。四次仿真结果都显示混合密度因子算法有很高的识别率。 Automatic pavement crack classification has become the bottle-neck for the prevalent application of advanced automatic pavement crack equipment. Based on the concept of density factor put forward by the author, one new structure of density factor was devised and one more efficient pavement crack classification algorithm named the synthetical distress density factor was obtained in this paper. Simulation showed that the synthetical distress density factor algorithm can classify the five most common kinds of cracks (longitudinal crack, transverse crack, block crack, alligator crack and no crack) very well. At the same time, four time simulations indicate that the synthetical distress density factor algorithms are better than PROXIMITY algorithm.
出处 《交通运输工程与信息学报》 2005年第2期19-26,共8页 Journal of Transportation Engineering and Information
关键词 路面破损 密度因子 自动识别 混合 自动检测 识别算法 分布特征 基于图像 破损类型 训练样本 神经网络 网络仿真 分类算法 测试样本 仿真结果 子算法 识别率 四次 Automatic pavement crack detection,pattern recognition, feature extraction, the synthetical distress density factor
  • 相关文献

参考文献4

二级参考文献13

  • 1.JTJ 059-95.公路路基路面现场测试规程[S].,1995..
  • 2CHENG H D,MIYOJIM M. Novel system for automatic pavement distress detection[J]. Journal of Computer in Civil Engineering,1998,12(3):145--152.
  • 3KELVIN . Designs and implementation of automated systems for pavement surface distress survey[J]. Journal of Infrastructure Systems, 2000,6 (1) : 24--32.
  • 4CHOU CH P,LIAU T.Development of automated algorithms for pavement condition survey[J].Transportation Research, 1996,30 (A) : 103--109.
  • 5Cheng H D,Miyojim M.Novel system for automatic pavement distress detection[J].Journal of Computer in Civil Engineering,1998(7):145~152.
  • 6Kelvin.Designs and implementation of automated systems for pavement surface distress survey[J].Journal of Infrastructure Systems,2000(3):24~32.
  • 7Kaseko Mohamed S,Ritchie,Stephen G.Pavement image processing using neural networks[A].Proceedings of the 2nd International Conference on Applications of Advanced Technologies in Transportation Engineering[C],1991:18~21.
  • 8Chou Ch P,Liau T.Development of automated algorithms for pavement condition survey[A],Transportation Research Record,1996:103~109.
  • 9Chou J,Cheng H D.Pavement distress classification using neural networks[A].Proceedings,IEEE International Conference on Systems,Man and Cybernetics[C],1994:397~401.
  • 10熊和金.路面破损诊断的神经网络方法[J].公路交通科技,2001,18(1):10-12. 被引量:9

共引文献74

同被引文献78

引证文献3

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部