期刊文献+

Lagrange系统在施加陀螺力后的对称性 被引量:1

Symmetries of Lagrange system subjected to gyroscopic forces
原文传递
导出
摘要 研究Lagrange系统在施加陀螺力后的Noether对称性与Lie对称性.给出系统在施加陀螺力后,可保持其Noether对称性与Noether守恒量的条件.给出系统在施加陀螺力后,可保持其Lie对称性与Hojman守恒量的条件.最后,举例说明结果的应用. The Noether symmetry and Lie symmetry of the Lagrange system subjected to gyroscopic forces are studied. The condition that the system, under gyroscopic forces, can keep its Noether symmetry and Noether conserved quantity is given. And the condition that the system subjected to gyroscopic forces can keep its Lie symmetry and Hojman conserved quantity is also given. Finally, two examples are given to illustrate the application of the results.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2005年第6期2474-2477,共4页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10272021) 教育部博士点基金(批准号:20040007022)资助的课题.~~
关键词 LAGRANGE系统 LIE对称性 守恒量 分析力学 陀螺力 Lagrange system gyroscopic force symmetry conserved quantity
  • 相关文献

参考文献4

二级参考文献30

  • 1赵跃宇.非保守力学系统的Lie对称性和守恒量[J].力学学报,1994,26(3):380-384. 被引量:77
  • 2Olver P J 1986 Applications of Lie Groups to Differential Equations( New York: Springer-Verlag).
  • 3Marsden J E and Ratiu T S 1994 Introduction to Mechanics and Symmerty (New York: Springer-Verlag).
  • 4Li J B, Zhao X H and Liu Z R 1994 Theory and Application of Generalized Hamiltonian Systems (Beijing: Science Press) (in Chinese).
  • 5Djukic Dj D and Vujanovic B 1975 Acta Mechanica 23 17.
  • 6Li Z P 1981 Acta Phys. Sin. 30 1659.
  • 7Li Z P 1993 Classical and Quantal Dynamics of Constrained Systems and Their Systems and Their Symmetrical Properties(Beijing:Beijing Polytechnic Univ.Press)(in Chinese)
  • 8Zhao Y Y and Mei F X 1999 Symmetries and Invariants of Mechanical Systems(Beijing:Science Press)(in Chinese)
  • 9Mei F X 1999 .Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems(Beijing:Science Press)(in Chinese)
  • 10Ge W K 2002 Acta Phys. Sin. 51 1156 (in Chinese).

共引文献140

同被引文献13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部