期刊文献+

采样定理、视觉原理及无监督聚类分析理论 被引量:3

Sampling Theory, Visual Principle and Unsupervised Clustering Analysis
在线阅读 下载PDF
导出
摘要 通过引入采样定理,提出了基于视觉采样定理的新聚类算法,将生物物理学中的Weber定律、采样定理和视觉结构有效地结合起来,并在此算法的基础上提出了聚类的有效性准则.该算法基于视觉系统工作原理,具有更强的物理解释性能.实验表明,此算法简洁、有效. Based on sampling theory, a new visual clustering algorithm was proposed. Combining the sampling theory, Weber law with clustering structure effectively, the main idea of this method is to consider the attractors corresponding to the differential functions of the sampling theory as the center of the cluster with the datum in the attraction domain as the members of the corresponding cluster. The simulations demonstrate the effectiveness of the new clustering method.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2005年第4期544-548,共5页 Journal of Shanghai Jiaotong University
基金 中法先进计划项目(PRASI03-032)
关键词 聚类算法 视觉系统 采样定理 吸引子 Algorithms Computer simulation Data processing Differential equations Iterative methods Sampling Vision
  • 相关文献

参考文献11

  • 1张讲社,梁怡,徐宗本.基于视觉系统的聚类算法[J].计算机学报,2001,24(5):496-501. 被引量:17
  • 2沈红斌,王士同,吴小俊.离群模糊核聚类算法[J].软件学报,2004,15(7):1021-1029. 被引量:37
  • 3SHEN Hong-bin, YANG Jie, WANG Shi-tong.Outlier detecting in fuzzy switching regression models [A]. AIMSA'04. LNAI3192 [C]. Varna:Springer, 2004.208- 215.
  • 4Hubert L J, Arabie P. Comparing partitions [J].Journal of Classification, 1985,15 (2):193- 218.
  • 5Xuanli Lisa Xie, Gerardo Beni. A validity measure for fuzzy clustering [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1991,13 (8):841-847.
  • 6Marr D. A computational investigation into the human representation[M]. San Francisco: W H Freeman,1982.
  • 7Romeny B M H, Florack L. A multiscale geometric model of human vision[A]. The Perception of Visual Information[C]. New York : Springer-Verlag, 1993.93-114.
  • 8Benedetto J J, Paulo J S, Ferreira G. Modern sampling theory: mathematics and applications [M].Boston: Birkhauser Boston, 2001.
  • 9Coren S, Ward L M, Enns J T. Sensation and perception[M]. 4th ed. Fort Worth, TX: Cold Spring Harcourt Brace College Publishers ,1994.
  • 10Poggio T. A theory of how the brain might work [M]. Torronto: Harbor Laboratory Press,1990.

二级参考文献17

  • 1[1]Jain A K, Dubes R C. Algorithms for Clustering Data. Englewood Cliffs, New Jersey: Prentice-Hall, 1988
  • 2[2]Arabie P, Hubert L J, de Soete G eds. Clustering and Classification. River Edge, NJ: World Scientific Publishing, 1996
  • 3[3]Duda R D, Hart P E. Pattern Classification and Scene Analysis. New York: Wiley, 1974
  • 4[4]Dubes R, Jain A K. Clustering techniques: The user's dilemma. Pattern Recognition, 1976, 8(2):247-260
  • 5[5]Marr D. Vision, A Computational Investigation into the Human Representation. San Francisco: W H Freeman, 1982
  • 6[6]Witkin A P. Scale space filtering. In: Proc the Eighth International Joint Conference on Artificial Intelligence, Karlsruhe, West Germany(Los Altos, California: The Conferences), 1983. 1019-1022
  • 7[7]Dangman J G. An information-theoretic view of analog representation in striate cortex. In: Computational Neuroscience. Cambridge, Mass; London: MIT Press, 1990. 403-423
  • 8[8]Swindale N V. The development of topography in the visual cortex: A review of models. Network: Computation in Neural Systems, 1996, 7(2):161-247
  • 9[9]Koenderink J J. The structure of images. Biological Cybernetics, 1984, 50(5):363-370
  • 10[10]Romeny B M H, Florack L. A multiscale geometric model of human vision. In: Hendee W R, Wells P N T eds. The Perception of Visual Information. New York: Springer-Verlag, 1993. 73-114

共引文献52

同被引文献21

  • 1夏候凯顺,陈善星,邬依林.基于双目云台相机的目标跟踪系统建模与仿真[J].系统仿真学报,2015,27(2):362-368. 被引量:6
  • 2王伟东,芦金婵,张讲社.基于视觉原理的密度聚类算法[J].工程数学学报,2005,22(2):349-352. 被引量:5
  • 3徐敏,王士同.改进的视觉原理聚类算法[J].微计算机应用,2006,27(6):655-659. 被引量:2
  • 4郎显宇,陆忠华,迟学斌.一种基于“基因表达谱”的并行聚类算法[J].计算机学报,2007,30(2):311-316. 被引量:11
  • 5FAYYAD U, PIATESKY-SHAPIRO G, SMYTH P, et al. Advances in knowledge and dataming [ M ]. Boston: MIT Press, 1996.
  • 6JAIN A K, DUBES R C. Algorithms for clustering data [ M ]. Engle-wood Cliffs New Jersey: Prentice-Hall, 1988.
  • 7ARABIE P, HUBERT L J, DESOETE G, et al. Clustering and classification [ M ]. River Edge, New Jersey: World Scientific Publishing, 1996.
  • 8DAVID H H. Eye brain and vision[M]. New York: Scientific American Library, 1995.
  • 9ASUNCION A, NEWMAN D J. UCI machine learning repository [ EB/OL ]. ( 2007 ) [ 2011-02-01 ]. http:// www. ics. uci. edu/- mlearn/MLRepository, html.
  • 10GUHA S, RASTOGI R, SHIM K. ROCK: a robust clustering algorithm for categorical attributes [ C ]//Processing of the 15th ICDE. Sydney, Australia: [ s. n. ], 1999 : 512-521.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部