期刊文献+

基于人工神经网络的变风量空调控制系统 被引量:10

VAV air conditioning control system based on an artificial neural network
在线阅读 下载PDF
导出
摘要 研究了变风量空调系统神经网络预测优化控制方法,优化指标考虑了舒适性和耗能量,舒适性指标取PMV指标,耗能量包括风机和冷水泵能耗。系统的控制量为送风风速和冷水流量,被控参数为空调区域的温湿度,采用预测滚动优化控制算法训练多层前向神经网络,然后将其作为优化反馈控制器来求解变风量暖通空调系统的优化解,并在运行中实时预测空调区域的负荷。仿真结果表明,采用此方法,在模型环境、负荷参数变化的情况下,既可以达到节能的要求,又可以使空调区域的温湿度保持在舒适范围内。 Studies the optimizing control method of artificial neural network prediction. The optimizing indices include comfort index and energy consumption index, the former adopting PMV, and the latter being energy consumption of fans and chilled water pumps. Controlling targets are the supply air velocity and the chilled water flow rate, and the controlled parameters are temperature and humidity in air conditioned zones. Adopting predictive rolling optimization algorithm to train a multi-layer forward neural network, the network acts as an optimizing feedback controller to obtain the optimal solution of VAV air conditioning systems, and the network predicts real-time load of air conditioned zones in operation. Simulation results show that adopting such method can save energy and maintain temperature and humidity in air conditioned zones within comfortable scope under the condition of variable model environment and load parameters.
出处 《暖通空调》 北大核心 2005年第4期112-116,59,共6页 Heating Ventilating & Air Conditioning
  • 相关文献

参考文献8

  • 1Bryson A E. Dynamic Optimization. Menlo Park, CA:Addison-Wesley-Longman, 1999
  • 2武妍.神经网络学习算法中的初始参数对泛化性能和效率的影响研究[J].计算机工程与应用,2002,38(23):25-27. 被引量:9
  • 3Seong C, Widrow t3. Neural dynamic optimization for control systerrks-Part Ⅱ, theory. IEEE Trans on Systems,Man, and Cybernetics, 2001, 31(4):490- 501
  • 4Carlos R G, Miguel V R. Decoupled control of temperature and relative humidity using a variable-airvolume HVAC system and non-interacting control. In:Proceedings of the 2001 IEEE International Conference on Control Applications. Mexico City, 2001. 11471151
  • 5张锦松,刘安田,谭靖.PMV图算法探讨[J].暖通空调,2002,32(1):37-39. 被引量:12
  • 6Bryson A E.Dynamic Optimization.Menlo Park,CA: Addison-Wesley-Longman,1999
  • 7Seong C, Widrow B. Neural dynamic optimization for control systems-Part Ⅱ, theory. IEEE Trans on Systems, Man, and Cybernetics, 2001, 31(4):490-501
  • 8Carlos R G, Miguel V R. Decoupled control of temperature and relative humidity using a variable-air volume HVAC system and non-interacting control. In: Proceedings of the 2001 IEEE International Conference on Control Applications. Mexico City, 2001. 1147-1151

二级参考文献8

  • 1钱以明.高层建筑空调与节能[M].上海:同济大学出版社,1995..
  • 2[1]Cherkassky V,Shepherd R.Regularization effect of weight initialization in back propagation networks[C].In:1998 World Congress on Computational Intelligence, 1998:2258~2261
  • 3[2]Jacobs R A.Increased rates of convergence through learning rate adaptation[J].Neural Networks, 1988; 1 (4) :295~307
  • 4[3]Tollenaere T.SuperSAB:fast adaptive back-propagation with good scaling properties[J]. Neural Networks, 1990;3(5) :561~573
  • 5[4]Wilson D R, Martinez T R.The need for small learning rates on large problems[C].In:Intemational Joint Conference on Neural Network,2001: 115~119
  • 6[5]Weigend A S,Rumelhart D E,Huberman B A.Generalization by weightelimination with application to forecasting[C].In:Advances in Neural Information Processing Systems,San Mateo,CA :Morgan Kaufmann, 1991:875~882
  • 7[6]Bo S.Optimal weight decay in perceptron[C].In:Proc of the International Conference on Neural Networks,1996:551~556
  • 8[7]Atiya A,Ji C Y.How initial eonditions affect generalization performance in large networks[J].IEEE Trans on Neural Networks,1997;8(2) :448~451

共引文献18

同被引文献81

引证文献10

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部