摘要
本文用有限维逼近无限维的方法来讨论函数空间中的总体最优化问题.我们给出了新的最优性条件和用变测度方法求得的有限维解逼近总体最优解的算法.对于有约束问题,我们用不连续罚函数法把有约束问题化为无约束问题来求解.最后,我们通过一个具有非凸状态约束的最优控制问题的实例来说明算法的有效性.
New optimality conditions of the integral global minimization are applied to characterize global minimum in functional space as a sequence of approximating solutions in finite-dimensional spaces. A variable measure algorithm is used to find such solutions. For a constrained problem, a discontinuous penalty method is proposed to convert it to unconstrained ones. A numerical example on optimal control problem with non convex state constraints is given to show that the algorithm is efficient.
出处
《运筹学学报》
CSCD
北大核心
2005年第1期21-31,共11页
Operations Research Transactions
关键词
无限维
有限维
总极值
逼近
最优性条件
积分
函数空间
测度方法
有效性
问题
Operations research, optimality conditions, integral global minimization, variable measure, finite Dimensional approximation