期刊文献+

独立分量重建模型的手写数字字符识别 被引量:6

Handwritten Digit Character Recognition by Model Reconstruction Based on Independent Component Analysis
在线阅读 下载PDF
导出
摘要 针对在手写字符识别中 ,因于书写习惯和风格的不同 ,造成字符模式不稳定的问题 ,利用独立分量对信号重建的良好性能 ,采用独立分量分析的方法抽取字符独立特征 ,并建立字符重建模型 ;通过对重建模型的误差分析进行字符识别 ;对美国国家邮政局USPS(USPostalServicedatabase)字库中全部数字字符完整的识别实验 。 To overcome handwritten character pattern's instability caused by different writing styles, a novel approach is proposed in this paper. By the approach, firstly, Independent Component Analysis (ICA) is used to extract character features and reconstruct character models. And character recognition is then conducted based on the error analysis of reconstructed models'. The proposed algorithm is tested on the entire USPS character database, and the experimental results validate the robustness and accuracy of the proposed algorithm.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2005年第3期455-460,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 空军装备部基础研究项目 (4 0 2 0 5 0 10 2 ) 中国科学院知识创新工程领域前沿项目 (CXNIGLAS A0 2 0 12 )
关键词 模式识别 手写字符 独立分量分析 重建模型 pattern recognition handwritten character independent component analysis model reconstruction
  • 相关文献

参考文献15

  • 1Réjean Plamondon, Sargur N Srihari. Online and offline handwriting recognition: A comprehensive survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1): 63~84
  • 2Tsang C K Y, Chung Fulai. Development of structural deformable model for handwriting recognition [A]. In: Proceedings of 14th International Conference on Pattern Recognition, Brisbane, Australia, 1998, 2: 1130~1133
  • 3Park H S, Sin B K, Moon Jongsub, et al. A truly 2D hidden Markov Model for offLine handwritten character recognition[J]. Pattern Recognition, 1998, 31(12): 1849~1864
  • 4张引,潘云鹤.工程图纸自动输入字符识别的二维隐性马尔可夫模型方法[J].计算机辅助设计与图形学学报,1999,11(5):403-406. 被引量:8
  • 5刘刚,张洪刚,郭军.用于脱机手写数字识别的隐马尔可夫模型[J].计算机研究与发展,2003,40(8):1252-1257. 被引量:10
  • 6朱小燕,史一凡.基于反馈的手写体字符识别方法的研究[J].计算机学报,2002,25(5):476-482. 被引量:18
  • 7杨健,杨静宇,高建贞.基于并行特征组合与广义K-L变换的字符识别[J].软件学报,2003,14(3):490-495. 被引量:18
  • 8Jutten C, Herault J. Independent component analysis versus principal component analysis[A]. In: Processing of European Signal Processing Conference, Grenoble, France, 1988. 643~646
  • 9Comon P. Independent component analysis, a new concept[J]. Signal Processing, 1994, 36(3): 287~314
  • 10Amari S. Super efficiency in blind source separation [J]. IEEE Transactions on Signal Processing, 1999, 47(4): 936~944

二级参考文献59

共引文献267

同被引文献30

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部