期刊文献+

一种基于特征光流检测的运动目标跟踪方法 被引量:5

Tracking method of moving target based on detection of feature optical flow
在线阅读 下载PDF
导出
摘要 图像序列的运动目标分割检测与跟踪是一个具有广泛应用的困难问题,特别当目标被遮挡丢失和/或大幅度机动时,算法要有很强的鲁棒性才能实现高精度的连续跟踪。通过特征角点提取、由粗到细层级匹配特征光流及其聚类分析算法实现运动目标分割,利用卡尔曼滤波估计对目标的多特征点构成的最小凸多边形描述子进行跟踪,具有抗遮挡丢失和抗机动功能,因此在跟踪过程中能够较好地保持或重新检测目标的最小凸多边形,使检测与跟踪算法鲁棒性强。对运动目标真实图像序列的实验结果充分证明了算法的优良性能。 It is a difficult problem to segmentation, detect and track moving target with an image sequence, which have abroad applications. Especially, when the target is sheltered and/or makes significant motion, the algorithm only with strong robusticity has capacity to complete precision and continual tracking. The segmentation of moving targets is completed by the algorithms of pick-up of feature corner points and detection of feature optical flow using a hierarchical coarse-to-fine matching as well as clustering analysis. The least protruding polygon descriptor constituted by many feature points of the detected target is tracked by using Kalman filtering estimations, which has the functions of resisting lose begotten by shelter and mechanization. Therefore, the least protruding polygon of target can been kept better or detected afresh, which make the robust of detecting and tracking algorithms very strong. The experiment results obtained with real image sequences included moving target have sufficiently proved the choiceness performances of the algorithms proposed.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2005年第3期422-426,共5页 Systems Engineering and Electronics
关键词 运动目标 光流 聚类分析 分割 卡尔曼滤波 跟踪 moving target optical flow clustering analysis segmentation Kalman filtering tracking
  • 相关文献

参考文献7

  • 1Meyer F G, Bouthemy A P. Region-based tracking using affine motion models in long image sequences[J]. CVGIP: Image Understanding,1994, 60(2): 119- 140.
  • 2Smith S M, Brady J M. ASSET-2: Real time motion segmentation and shape tracking[J]. PAMI, 1995, 17(8): 814-820.
  • 3Peteffreund N. Robust tracking of position and velocity with Kalman Snake[J]. PAMI, 1999, 21(6): 564-569.
  • 4Jianbo Shi, Carlo Tomasi. Good features to track[J]. IEEE Conference on Computer Vision and Pattern Recognition, 1994, 593- 600.
  • 5Nagel H H. Displacement vectors derived from second order intensity variations in image sequences[J]. Comput. Vis. Graph. Image Process,1983, 25: 85 - 117.
  • 6桑苏明.[D].哈尔滨工业大学,1989.
  • 7Lucas Bruce D, Kanade Takeo. An iterative image registration technique with an application to stereo vision[ C ]. International Joint Conference on Artificial Intelligence, 1981. 674 - 679.

同被引文献40

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部