期刊文献+

基于支持向量机的复杂背景下的人体检测 被引量:16

Support Vector Machine Based Human Detection under Complex Background
在线阅读 下载PDF
导出
摘要 常用的人体检测方法多是基于经验风险最小化原理的传统统计理论,其性能只有在样本趋于无穷大时才有理论上的保证,而在实际应用中,学习样本通常是有限的。针对传统统计理论在人体检测中存在的不足,提出了一种基于统计学习理论———支持向量机(SVM)的人体检测方法,利用彩色空间对背景进行自适应建模提取运动目标,然后使用训练好的SVM进行验证是否是人体。为了简化SVM分类器的设计及提高机器学习的效率,提出了一种星形向量表示法用于抽取目标的特征向量,并且用实验方法得到了这种表示法的最优表示。将SVM与ANN进行比较,并且对不同内积函数的SVM的性能也进行了比较。实验结果表明,SVM的性能要优于ANN,并且采用径向基函数的SVM性能最好。该方法鲁棒性强,正确率高,解决了复杂背景下运动人体实时检测的一些关键问题。 In the field of computer vision, the research on human detection has a wide application prospect. Prevalent human detection methods usually use traditional statistical theory, which is based on empirical risk minimization. But the minimization of empirical risk over limited training data does not imply good generalization to novel test data. Aiming at the shortcomings of traditional statistical theory used in human detection, a new method based on SVM is presented in this paper. An adaptive background subtraction method combined with color is used to segment the motion objects. Then the trained SVM classifier distinguishes the motion object whether it is a human or not. In order to simplify the design of SVM classifier and improve efficiency of machine learning, a center radiating vector representation is proposed to abstract features of the object. And the optimal representation is obtained by experiments. During the machine learning, a bootstrap method is adopted to reduce the complexity of training SVM. Experiments show that the performance of SVM is better than ANN, and the radial basis function SVM has better performance than other SVMs on human distinguish. This method has strong robustness and high accuracy.
作者 潘锋 王宣银
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2005年第2期181-186,共6页 Journal of Image and Graphics
基金 航天支撑技术基金项目(20012HT2ZJDX) 杭州市科技发展计划 (2001121C42)
关键词 人体检测 支持向量机(SVM) 复杂背景 支持向量机 机器学习 统计学习理论 彩色空间 SVM分类器 运动目标 星形 support vector machine, background subtraction, motion detection, feature extraction, human detection
  • 相关文献

参考文献13

  • 1刘晓冬,苏光大,周全,田超.一种可视化智能户外监控系统[J].中国图象图形学报(A辑),2000,5(12):1024-1029. 被引量:33
  • 2Gavrila D M. The visual analysis of human movement: A survey [ J ].Computer Vision and Image Understanding, 1999,73 ( 1 ) :82 - 98.
  • 3Nicolaou C A, Egbert A L, Lacher R C, et al. Human shape recognition using the method of moment and artificial neural networks [ A]. In: International Joint Conference on Neural Networks [ C ],Washington, DC, the USA, 1999:3147 -3151.
  • 4Haritaoglu I, Harwood D, Davis L S. W4: real-time surveillance of people and their activities[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22( 8 ): 809 - 830.
  • 5Toth D, Aach T. Detection and recognition of moving objects using statistical motion detection and Fourier descriptors [ A ]. In: 12th International Conference on Image Analysis and Processing [ C ],Mantova, Italy, 2003:1 - 6.
  • 6Satoh Y, Tanahashi H, Niwa Y, et al. Robust human detection from complex background by radial reach filter [ A ]. In: Proceeding of IEEE TENCON' 02 [ C ]. Beijing, China, 2002: 533 - 536.
  • 7潘锋,王宣银,王全强.智能监控中基于头肩特征的人体检测方法研究[J].浙江大学学报(工学版),2004,38(4):397-401. 被引量:10
  • 8Ran Y, Zheng Q. Multi moving people detection from binocular sequences[ A ]. In: IEEE International Conference on Acoustics,Speech, and Signal Processing[ C ] , HongKong, 2003:37 - 40.
  • 9Tate S, Takefuji Y. Video-based human shape detection by deformable templates and neural network [ A ]. In: Sixth International Conference on Knowledge-Based Intelligent Information & Engineering Systems[ C]. Crema, Italy, University of Milan, 2002: 280 - 285.
  • 10Han J, Bhanu B. Detecting moving humans using color and infrared video [ A ]. In: IEEE Conference on Multisensor Fusion and Integration for Intelligent Systems[ C], Tokyo, Japan, 2003:228 -233.

二级参考文献12

  • 1李振玉. 图象通信与监控系统[M]. 北京: 中国铁道出版社,1994.
  • 2COLLINS R, LIPTON A, KANADA T, et al. A system for video surveillance and monitoring: VSAM final report [R]. Pittsburgh: Robotics Institute,Carnegie Mellon University, 2000.
  • 3KUNO Y, WATANABE T, SHIMOSAKODA Y, et al. Automated detection of human for visual surveillance system [A]. Proceedings of the 13th International Conference on [C]. Vienna: IEEE Computer Society, 1996: 865-869.
  • 4NICOLAOU C A, EGBERT A L, LACHER R C, et al. Human shape recognition using the method of moment and artificial neural networks [A]. IJCNN '99.International Joint Conference on [C]. Washington,DC: IEEE Computer Society, 1999:3147 -3151.
  • 5VAPNIK V. The nature of statistical learning theory [M]. New York: Springer, 1995.
  • 6WREN C, AZARBAYEJANI A, DARRELL T, et al.Pfinder: Real-time tracking of the human body [J].IEEE Trans Pattern Analysis and Machine Intelligence,1997, 19(7): 780-785.
  • 7MCKENNA S J, JABRI S, DURIC Z, et al. Tracking groups of people [J]. Computer Vision and Image Understanding, 2000, 80: 42-56.
  • 8HUM K. Visual pattern recognition by moment invariants [J]. IRE Trans on Information Theory, 1962, 8(2): 179-187.
  • 9Cravino F Delucca et al. DEKF system for crowding estimation by a multiple-model approach. Electronics Letters. 1994, 30(5) :390-391.
  • 10Regazzoni C S. A distributed extended kalman filtering network for estimation of multiple objects. Electronics Letters. 1994,30(15): 1202-1203.

共引文献40

同被引文献104

引证文献16

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部