摘要
对凡满足条件Re{f(z)/z}>0的函数的展开式f(z)=z+(sum from n=2 to ∞)a_nz^n的前n项式S_n(z)=z+a_2z^2+…+a_nz^n,寻找S_n(z)的星形和凸形半径问题。
The purpose of this paper is to find the radius of star and convex form of starting n-order polynomial S_x(z)=z+a_z^2+…+a_nz^n of the expansion of a function f(z)=z+sum from n=2 to ∞ a_nz^n with Re{f(z)/z}>0.
出处
《西北纺织工学院学报》
1993年第3期202-205,219,共5页
Journal of Northwest Institute of Textile Science and Technology