期刊文献+

随机结构非线性动力响应的概率密度演化分析 被引量:65

THE PROBABILITY DENSITY EVOLUTION METHOD FOR ANALYSIS OF DYNAMIC NONLINEAR RESPONSE OF STOCHASTIC STRUCTURES
在线阅读 下载PDF
导出
摘要 提出了随机结构非线性动力响应分析的概率密度演化方法.根据结构动力响应的随机状态方程,利用概率守恒原理,建立了随机结构非线性动力响应的概率密度演化方程.结合Newmark-Beta时程积分方法与Lax-Wendroff差分格式,提出了概率密度演化方程的数值分析方法.通过与Monte Carlo分析方法对比,表明所给出的概率密度演化方法具有良好的计算精度和较小的计算工作量.研究表明:随机结构非线性动力响应概率密度具有典型的演化特征,随着时间增长,概率密度曲线分布趋于复杂. The probability density evolution method (PDEM) for dynamic nonlinear response analysis of stochastic structures is proposed. In the paper, an uncoupled augmented state equation, based on existence and uniqueness of solution of well-posed dynamic systems, is firstly presented. According to the principle of preservation of probability, the probability density evolution equation of the structural nonlinear dynamic response is put forward and then uncoupled into a one-dimensional partial differential equation. The instantaneous probability density function of any response quantity can be obtained by solving the initial value partial differential equation problem. In the computational aspect, the proposed method can be carried out through a hybrid algorithm, where a deterministic nonlinear dynamic response analysis, say, the Newmark-Beta time integration method, is employed firstly to gain the coefficient of the probability density evolution equation and then a finite difference method with Lax-Wendroff scheme is used to solve the partial differential equation. The dynamic responses of an 8-story shear-story structure with bilinear hysteretic restoring force model are studied. The investigations indicate that the probability density functions of nonlinear dynamic responses evolves and tends more complex against time, usually far from well known distribution types such as the normal distribution and Rayleigh distribution, etc. This may have obvious influence on dynamic reliability assessment of the structure and therefore the traditional dynamic reliability theory may need to be revisited. The computations demonstrate that the proposed PDEM is of high accuracy and efficiency, without the limitation of the degree of variance of the source random parameters, neither influenced by the so-called secular terms problem. Therefore, it is a promising method worth further investigation.
作者 李杰 陈建兵
出处 《力学学报》 EI CSCD 北大核心 2003年第6期716-722,共7页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家杰出青年科学基金资助项目(59825105)
关键词 非线性动力响应 随机结构 时程积分 概率密度演化 守恒 差分格式 计算工作 结构动力响应 复杂 数值分析方法 stochastic structures, nonlinear, dynamic response, probability density evolution, time integration, difference method
  • 相关文献

参考文献17

  • 1Kleiber M, Hien TD. The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation. Chishcester: John Wiley & Sons, 1992
  • 2Ghanem R, Spanos PD. Stochastic Finite Element: A Spectral Approach. Berlin: Springer-Verlag, 1991
  • 3Ding GY, Li J. The nonlinear response emulation analysis of the stochastic structure subjected to the earthquake excitation. In: Proceedings of the 12th World Earthquake Engineering Conference, New Zealand, 2000
  • 4Klosner JM, Haber SF, Voltz P. Response of non-linear systems with parameter uncertainties. Int J Non-Linear Mechanics, 1992, 27 (4): 547~563
  • 5Micaletti RC, Cakmak AP, Nielsen SRK, et al. A solution method for linear and geometrically nonlinear MDOF systems with random properties subject to random excitation.Probabilistic Engineering Mechanics, 1998, 13(2): 85~95
  • 6Bernard P. Stochastic linearization: What is available and what is not. Computers & Structures, 1998, 67:9~18
  • 7Liu WK, Belytschko T, Mani A. Probability finite elements for nonlinear structural dynamics. Computer Methods in Applied Mechanics and Engineering, 1986, 56:61~81
  • 8Teigen JG, Frangopol DM, Sture S, et al. Probabilistic FEM nonlinear concrete structures. Ⅰ: Theory. Journal of Structural Engineering, 1991, 117 (9): 2674~2689
  • 9Frangopol DM, Lee YH, Willam KJ. Nonlinear finite element reliability analysis of concrete. Journal of Engineering Mechanics, 1996, 122 (12): 1174~1182
  • 10Huang CT. On the Dynamic Response of Nonlinear Uncertain Systems. [Ph D Thesis]. California Institute of Technology, 1996

二级参考文献13

  • 1李杰.随机结构分析的扩阶系统方法(Ⅰ)——扩阶系统方程[J].地震工程与工程振动,1995,15(3):111-118. 被引量:12
  • 2张炳根 赵玉芝.科学与工程中的随机微分方程[M].北京:海洋出版社,1981..
  • 3Shinozuka M. Probabilistic modeling of concrete structures. Journal of Engineering Mechanics, ASCE, 1972, 98:1433-1451.
  • 4Kleiber M, Hien TD. The Stochastic Finite Element Method. Chishcester: John Wiley & Sons, 1992.
  • 5Hisada T, Nakagiri S, Stochastic finite element method developed for structural safety and reliability. In: Proc.3rd Int Conf on Structural Safety and Reliability, 1981,395-408.
  • 6Ghanem R, Spanos PD. Polynomial chaos in stochastic finite elements. Journal of Applied Mechanics, 1990, 57:197-202.
  • 7Jensen H, Iwan WD. Response of systems with uncertain parameters to stochastic excitation. Journal of Engineering Mechanics, 1992, 118 (5): 1012-1025.
  • 8Elishakoff I, Ben Y J, Shinozuka M. Variational principles developed for and applied to analysis of stochastic beams.Journal of Engineering Mechanics, 1996, 122 (6): 559-565.
  • 9Ren Y J, Elishakoff I, Shinozulm M. Finite element method for stochastic beams based on variational principles. Journal of Applied Mechanics, 1997, 64:664-669.
  • 10Elishakoff I, Impollonia N, Ren YJ. New exact solutions for randomly loaded beams with stochastic flexibility. International Journal of Solids and Structures, 1999, 36,2325-2340.

共引文献52

同被引文献888

引证文献65

二级引证文献435

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部