期刊文献+

WAVEFORM RELAXATION METHODS OF NONLINEAR INTEGRAL-DIFFERENTIAL-ALGEBRAIC EQUATIONS 被引量:3

原文传递
导出
摘要 In this paper we consider continuous-time and discrete-time waveform relaxation meth-ods for general nonlinear integral-differential-algebraic equations. For the continuous-time case we derive the convergence condition of the iterative methods by invoking the spec-tral theory on the resulting iterative operators. By use of the implicit difference forms,namely the backward-differentiation formulae, we also yield the convergence condition of the discrete waveforms. Numerical experiments are provided to illustrate the theoretical work reported here.
作者 Yao-linJiang
出处 《Journal of Computational Mathematics》 SCIE CSCD 2005年第1期49-66,共18页 计算数学(英文)
  • 相关文献

参考文献21

  • 1J K White and A Sangiovanni-Vincentelli, Relaxation Techniques for the Simulation of VLSI Circuits, Kulwer Academic Publishers, Boston, 1986.
  • 2U Miekkala and O Nevanlinna, Iterative solution of systems of linear differential equations, Acta Numerica, (1996), 259-307.
  • 3Y L Jiang, W S Luk, and O Wing, Convergence-theoretics of classical and Krylov waveform relaxation methods for differential-algebraic equations, IEICE Transactions on Fundamentals of Electronics, Communications, and Computer Sciences, E80-A:10 (1997), 1961-1972.
  • 4Y L Jiang and O Wing, Monotone waveform relaxation for systems of nonlinear differentialalgebraic equations, SIAM Journal on Numerical Analysis, 38:1 (2000), 170-185.
  • 5Y L Jiang, R M M Chen, and O Wing, Improving convergence performance of relaxation-based transient analysis by matrix splitting in circuit simulation, IEEE Transactions on Circuits andSystems - Part I, 48:6 (2001), 769-780.
  • 6Y L Jiang, R M M Chen, and O. Wing, Waveform relaxation of nonlinear second-order differential equations, IEEE Transactions on Circuits and Systems - Part I, 48:11 (2001), 1344-1347.
  • 7Z L Huang, R M M Chen, and Y L Jiang, A parallel decoupling technique to accelerate convergence of relaxation solutions of integral-differential-algebraic equations, Journal of Interconnection Networks, 2:3 (2001), 295-304.
  • 8Y L Jiang, On time-domain simulation of lossless transmission lines with nonlinear terminations,SIAM Journal on Numerical Analysis, 42:3 (2004), 1018-1031.
  • 9Y L Jiang, Mathematical modelling on RLCG transmission lines, submitted for publication, 2004.
  • 10M R Crisci, E. Russo, and A. Vecchio, Time point relaxation methods for Volterra integrodifferential equations, Computers Math. Applic., 36:9 (1998), 59-70.

同被引文献3

  • 1Lelarasmee E,Ruehli A E,Sangiovanni-Vincentelli A L.The waveform relaxation method for time-domain analysis of large scale integrated circuits[].IEEE Trans CAD of IC and Systems.1982
  • 2Jackiewicz Z,Kwapisz M.Convergence of waveform relaxation methods for differentialalgebraic equations[].SIAM Journal on Numerical Analysis.1996
  • 3Jiang Yaolin.A general approach to waveform relaxation solutions of nonlinear differential-algebraic equations:The continuous-time and discrete-time cases[].IEEE Transactions on Circuits and Systems-I: Regular papers.2004

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部