期刊文献+

强塑性变形(SPD)制备超细晶粒材料的研究现状与发展趋势 被引量:11

Progression of Studies on Severe Plastic Deformation Techniques
在线阅读 下载PDF
导出
摘要 强塑性变形(SPD)技术已成为21世纪获得微米、甚至纳米级细晶粒材料,在塑韧性损失不大的情况下成倍提高金属材料强度的手段。概要介绍了目前国内外开发的强塑性变形的新技术或新方法,指出,应力或塑性变形将成为今后改变材料组织性能的主要技术之一,将与热处理技术并驾齐驱。应力热处理专业将成为材料科学与工程中一个新型的专业。 Severe plastic deformation(SPD)technique has become a means of obtaining submicron-scale, even nano-scale grained materials.By using this technique,the strength of metallic materials can he double enhanced without much loss of ductility.In this paper,the recent development of this technique is briefly introduced.It is also pointed out that stress or plastic deformation will become one of major techniques of changing the microstructures and properties of materials and will keep abreast with heat treatment.Stress-heat treatment will be a new special field of study in materials science and engineering.
出处 《材料导报》 EI CAS CSCD 北大核心 2005年第1期1-5,共5页 Materials Reports
基金 湖南省自然科学基金(03JJY3074)
关键词 塑性变形 超细晶粒 塑韧性 材料组织 金属材料 热处理技术 应力 制备 纳米级 新型 severe plastic deformation ultra-fined grain nanomaterials
  • 相关文献

参考文献31

  • 1石凤健,汪建敏,许晓静.等截面角形挤压的研究内容及现状[J].热加工工艺,2003,32(1):51-53. 被引量:17
  • 2张玉敏,丁桦,孝云祯,杨春征.等径弯曲通道变形(ECAP)的研究现状及发展趋势[J].材料与冶金学报,2002,1(4):258-262. 被引量:21
  • 3崔祺 大崛榕一.轻金属,2002,52(4):185-185.
  • 4古井光明 川上贵之 佐治重兴.轻金属,2002,52(8):339-339.
  • 5穴田博 田中严.轻金属,2003,:53-53,20.
  • 6高山善匡 西乡宜恭.轻金属,2002,52(11):566-566.
  • 7野田雅史 广桥光治.日本金属学会志,2002,66(2):101-101.
  • 8野田雅史 广桥光治.日本金属学会志,2003,67(2):98-98.
  • 9吉水源宏 桑原利彦.轻金属,2003,53(7):284-284.
  • 10Ma A, Lim S W, Nishiha Y. Mater Sci Forum,2003,(426-432) : 2735.

二级参考文献59

  • 1[21]Handrich K, Kobe S. Amorphe ferro-and ferrimagnetica[M]. Berlin: Academic-Verlay, 1980.
  • 2[22]Neish K , Uchida T ,Yamauchi A, et al.Low-temperature superplasticity in a Cu-Zn-Sn alloy processed by severe plastic deformation[J]. Metal Sci Eng 2001 , A307:23.
  • 3[23]Mabuchi M ,Iwasaki H ,Yanase K, et al.Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE[J]. Scripta, Materialia , 1997, 36(6):681.
  • 4[24]Komura S ,Berbon P B, Furukawa M , et al.High strain rate superplasticity in an Al-Mg alloy containing scandium[J]. Scripta, Materilia, 1998, 38(12) :1851.
  • 5[25]Horita Z ,Furukawa M ,Nemoto M , et al.Superplastic forming at high strain rates after severe plastic deformation[J]. Acta Materialia, 2000, 48:3633.
  • 6[1]Segal V M ,Rexnikov V I , Drobyshevskiy A E.et al.Plasticheskaya Obrabotka Metalloy Prostym Sdvigom,left bracket Plastic Metal Working by Simple Shear right bracket[J].Russia metallurgy,1981,99(1):115.
  • 7[2]Iwahashi Y , Wang J , Horita Z ,et al.Principle of equal-channel angular pressing for the processing of ultra-fine grained materials[J]. Scripta Materialia, 1996,35:143.
  • 8[3]Wu Y , Baker I.Experimental study of equal channel angular extrusion[J].Scripta Materilia,1997,37(4):437.
  • 9[4]Segal V M.Materials processing by simple shear[J]. Metal Sci Eng,1995,A197:157.
  • 10[5]Ferrasse S , Segal V M , Hartwig K T , et al.Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion[J]. Metal Mater, 1997 , 46 :1047.

共引文献33

同被引文献167

引证文献11

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部