期刊文献+

方形渐变空气孔微结构光纤的色散特性分析 被引量:18

Dispersion Property Analysis of Square-Lattice Varying Microstructured Optical Fiber
原文传递
导出
摘要 提出了一种新型的方形分布渐变空气孔微结构光纤.借助时域有限差分法计算了孔间距取2.0μm和2.5 μm,最小孔直径分别取0.4 μm、0.6 μm、0.7 μm、0.8μm和1.0μm,从第一层到第五层直径线性递增量分别为0.1μm/层和0.2 μm/层的五层渐变空气孔微结构光纤的基模色散曲线图,结果表明渐变空气孔微结构光纤在控制色散的能力上明显优于空气孔不变的微结构光纤,这种光纤的色散曲线在1400~2000 nm波长范围内保持平坦且具有更低的色散量;当渐变空气孔微结构光纤第三层孔的直径取与孔直径不变微结构光纤的孔直径相同,且第一层到第五层孔直径按每层0.2μm的斜率增长时,其色散曲线最低最平坦,色散值保持在30 ps/(km·nm)左右. A new square-lattice varying microstructured optical fiber is presented. Using finite-difference time-domain method, the dispersion curves of five-ring varying microstructured optical fiber are calculated, hole-to-hole space of which is 2.0 μm and 2.5 μm, the least diameter is 0.4 μm, 0.6 μm, 0.7 μm, 0.8 μm and 1.0 μm, and the diameter increases from the first ring to the fifth ring by a pitch of Δd=0.1 μm and Δd=0.2 μm respectively. The result shows that the new square-lattice varying microstructured fiber is better than the square-lattice no-varying microstructured fiber in controlling the dispersion and dispersion slope in the wide wavelength, the dispersion curve of which can remain flatter and lower in 1400-2000 nm. When the third ring diameter of varying microstructured fiber has the same value with the diameter of no-varying microstructured fiber, the lowest and flattest dispersion curve is obtained, in this case, the dispersion value is about 30 ps/(km &middot nm) and Δd=0.2 μm. So the flatter and lower dispersion curve can be realized by adjusting the diameters, distribution of air holes, and the hole-to-hole space.
出处 《光学学报》 EI CAS CSCD 北大核心 2005年第2期174-178,共5页 Acta Optica Sinica
基金 山西省自然科学基金(20041036)资助课题。
关键词 导波与光纤光学 微结构光纤 色散 时域有限差分法 导波模式 Crystal lattices Dispersion (waves) Finite difference method Microstructure Optical fibers Time domain analysis
  • 相关文献

参考文献2

二级参考文献23

  • 1武劲青,薛文瑞,周国生.方形渐变空气孔微结构光纤的色散特性分析[J].光学学报,2005,25(2):174-178. 被引量:18
  • 2孙喜文,王清月,胡明列,柴路,栗岩峰.光子晶体光纤中非线性传输的数值分析[J].中国激光,2005,32(11):1478-1484. 被引量:6
  • 3张亚妮,任立勇,李康,王韩毅,赵卫,王丽莉,苗润才,Maryanne C.J.Large,Maurtijn A.van Eijkelenborg.Guiding mode in elliptical core microstructured polymer optical fiber[J].Chinese Optics Letters,2007,5(4):194-196. 被引量:1
  • 4Yee K S. Numerical solution of initial boundary value problems involving Maxwell' s equations in isotropic media. IEEE Trans. Antennas Propagat. , 1966, 14(3):302-307
  • 5Engquist B, Majda A. Absorbing boundary conditions for the numerical simulation of waves. Mathematics of Computation, 1977, 31(139):629-651
  • 6Mur G. The modeling of singularities in the finite-difference approximation of the time-domain electromagnetic-field equations. IEEE Trans. Microwave Theory Tech. , 1981, 29(10):1073-1077
  • 7Fang J Y, Mei K K. A super-absorbing boundary algorithm for numerical solving electromagnetic problems by time-domain finite difference method. IEEE AP-S International Symposium. New York: Syracuse, June 6-10, 1988. 427-475
  • 8Berenger J P. A. perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. , 1994, 144(2) :185-200
  • 9Taflove A. Computational Electrodynamics : The Finite-Difference Time-Domain Method. London:London Artech House Boston, 1995. 181-194
  • 10Chen Y C, Mittra R. A highly efficient finite-difference time-domain algorithm for analyzing asymmetric waveguides. Microwave and Optical Technology Letters,1997, 15(4) :201-203

共引文献8

同被引文献164

引证文献18

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部