期刊文献+

求解带约束连续型minimax问题的罚函数区间算法 被引量:4

Penalty Function Interval Method for Solving Constrained Continuous Minimax Problem
在线阅读 下载PDF
导出
摘要 研究了带约束连续型minimax问题的数值方法,其目标函数和约束函数都是Lipschitz连续的;建立了针对带约束连续型minimax问题的罚函数法,从而将其转化为无约束两层规划问题,并证明了算法的收敛性;最后,用无约束两层规划问题的区间算法进行求解,给出了数值算例.结果表明,该算法是可靠和有效的. A numerical method was studied to solve constrained continuous minimax problems with a Lipschitz continuous objective function and constrained functions. The penalty function method was built to transform a constrained continuous minimax algorithm into a bi-level programming problem, and the convergence of the algorithm was proved. At last, the unconstrained bi-level programming interval algorithm was applied to solve the problem, and numerical examples were given to show the efficiency and the reliability of this algorithm.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2005年第1期129-132,共4页 Journal of China University of Mining & Technology
基金 国家自然科学基金项目(50174051)
关键词 MINIMAX问题 连续型 区间算法 求解 规划问题 数值算例 罚函数 约束函数 收敛性 目标函数 continuous minimax problem bi-level programming problem penalty function interval algorithm
  • 相关文献

参考文献5

  • 1Moore R E. Methods and application of interval analysis[M]. Philadehia:SIAM, 1979.
  • 2Alefeld G, Herzberger J. Introduction to interval computations[M]. New York:Academic Press, 1983.
  • 3Wolfe M A. An interval algorithm for constrained global optimization [J]. Journal of Computational and Applied Mathematics, 1994 (50) : 605-612.
  • 4Dem'yanov V F, Malozemov F N. Introduction to minimax[M]. New York: Jorn Wiley & Sons, 1974.
  • 5Shen Z H, Neumaier A, Eiermann M C. Solving minimax problems by interval methods [J]. BIT, 1990(30) : 742-751.

同被引文献21

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部