期刊文献+

基于顶点预测的特征保持网格光顺算法 被引量:11

Feature-preserving mesh smoothing algorithm based on vertex estimation
在线阅读 下载PDF
导出
摘要 为了特征保持地光顺带噪声的三角网格,提出一种基于顶点预测的光顺算法.分析了三角网格的每个顶点与一阶邻域顶点和二阶邻域三角形之间的几何关系,应用带平均曲率权的双边滤波器和准Laplacian光顺算子,通过三步预测顶点的坐标位置,把三角网格的原始顶点单步移动到预测的新坐标,得到光顺后的三角网格.该算法在光顺的同时有效地保持了原始三角网格的特征.实验结果表明,此网格光顺算法处理小噪声和大噪声都是有效且鲁棒的. A feature-preserving smoothing algorithm for triangular meshes was proposed based on the geometric analysis of vertex's relation with the specific local neighbors, as well as on practical and reasonable understanding of the difference between features and noises. The algorithm was divided into three passes of vertex estimation. The three-pass vertex estimation, which simply combined mean-curvature-weighted mesh bilateral filtering and quasi-Laplacian smoothing operator, was performed to smooth out the mesh rapidly whilst preserving the sharp geometric features. The experimental data showed that the presented smoothing algorithm worked well for both small-scale and large-scale noises, and was more efficient and robust than previous methods.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2004年第12期1535-1539,共5页 Journal of Zhejiang University:Engineering Science
基金 国家"973"重点基础研究发展规划资助项目(2002CB312101).
关键词 三角网格光顺 顶点预测 双边滤波器 准Laplacian光顺 特征保持 Graph theory Learning algorithms Robustness (control systems) Scanning Signal filtering and prediction Three dimensional
  • 相关文献

参考文献10

  • 1VOLLMER J, MENCL R, MULLER H. Improved Laplacian smoothing of noisy surface meshes[J]. Computer Graphics Forum,1999, 18(3): 131-138.
  • 2LIU X G, BAO H J, SHUM H Y,et al. A novel volume constrained smoothing method for meshes[J]. Graphics Models,2002, 64(3-4): 169-182.
  • 3OHTAKE Y, BELYAEV A, BOGAEYSKI I. Mesh regularization and adaptive smoothing[J]. Computer-Aided Design, 2001, 33: 789-800.
  • 4JONES T, DURAND F, DESBRUN M. Non-iterative,feature preserving mesh smoothing [A]. Proceedings of SIGGRAPH[C]. San Diego: ACM, 2003: 943-949.
  • 5PINKALL U, POLTHIER K. Computing discrete minimal surfaces and their conjugates[J]. Experimental Mathematics, 1993,2(1):15-36.
  • 6TOMASI C, MANDUCHI R. Bilateral filtering for gray and color images[A]. Proceedings of the Sixth International Conference on Computer Vision[C]. Bombay: Narosa Pablishing House, 1998: 839-846.
  • 7DESBRUN M, MEYER M, SCHRODER P,et al. Implicit fairing of irregular meshes using diffusion and curvature flow[A]. Proceedings of SIGGRAPH [C]. Los Angeles: ACM,1999: 317-324.
  • 8GUSKOV I, SWELDENS W, SCHRODER P. Multiresolution signal processing for meshes[A]. Proceedings of SIGGRAPH[C]. Los Angeles: ACM, 1999: 325-334.
  • 9FLEISHMAN S, DRORI I, COHEN-OR D. Bilateral mesh denoising[A]. Proceedings of SIGGRAPH[C]. San Diego: ACM, 2003: 950-953.
  • 10TAUBIN G. A signal processing approach to fair surface design[A]. Proceedings of SIGGRAPH [C]. Los Angeles: ACM, 1995: 351-358.

同被引文献163

引证文献11

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部