期刊文献+

基于均匀空间的颜色分级方法 被引量:12

Color Grading Method Based on Perceptually Uniform Color Space
在线阅读 下载PDF
导出
摘要 自动视觉检测是机器视觉的一个重要研究领域 ,而颜色分级是自动视觉检测中的一个典型问题 ,在陶瓷、木材等行业应用广泛。为了实现快速自动分级 ,根据人类视觉特性 ,提出了一种基于均匀颜色空间的表面颜色分级方法。该方法首先将数据从 RGB颜色空间转换到 CIE1976 L*a*b*均匀颜色空间 ;然后在 CIE1976 L*a*b*空间用 RWM(radius weighted m ean)方法提取主导颜色 (dom inant colors,DC) ,再以此作为颜色特征 ,提出了一种新的颜色距离度量——映射色差 ,并分析了它与平均色差的关系 ;最后以映射色差为距离度量 ,采用最小距离分类器来进行颜色分级。 Automatic visual inspection is one of the most important areas of machine vision. Color grading is one of the typical issues in automatic visual inspection, and has been broadly used in ceramic tiles, lumber etc. In order to implement grading quickly, accurately and automatically, a color grading method based on perceptually uniform color space is put forward according to human vision system characteristics. Firstly, color data in RGB like color space is transformed into perceptually uniform color space-CIE 1976 L *a *b *. In CIE 1976 L *a *b * color space, 2-D RWM (radius weighted mean) cut algorithms are applied to extract DC (dominant colors), which is not sensitive to lighting change and less computation complexity compared to 3-D RWM cut algorithms. Then, DC set as color feature, an innovative color distance metric-mapping color difference is proposed, which is identical to human visual system characteristic. The relation between mapping color difference and average color difference is also analysed. Finally, mapping color difference used as distance metric, anaminimum distance classifier is adopted to color grading. Experiments results show that the proposed method is effective and encouraging.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2004年第11期1277-1283,F005,共8页 Journal of Image and Graphics
关键词 视觉检测 分类器 距离度量 均匀颜色空间 RGB颜色空间 颜色特征 机器视觉 色差 人类视觉特性 表面颜色 machine vision, automated visual inspection, color grading, color image, dominant colors(DC)
  • 相关文献

参考文献15

  • 1Newman T S, Jain A K. A survey of automated visual inspection[J]. Computer Vision and Image Understanding, 1995, 61(2):231-262.
  • 2Malamas E N, Petrakis E G M, Zervakis M, et al. A survey on industrial vision systems, applications and tools [J]. Image and Vision Computing, 2002, 21(2): 171-188.
  • 3Boukouvalas C, Kittler J, Marik R, et al. Automatic grading of ceramic tiles using machine vision[A]. In.. Proceedings of IEEE International Symposium on Industrial Electronics [C],Santiago, Chile, 1994:13-18.
  • 4Boukouvalas C, Kittler J, Marlk R, et al. Automatic color grading of ceramic tiles using machine vision [ J ]. IEEE Transactions on Industrial Electronics, 1997, 44(1) : 132-135.
  • 5Boukouvalas C, Kittler J, Marik R, et al. Color grading of randomly textured ceramic tiles using color histograms [J]. IEEE Transactions on Industrial Electronics, 1999, 46(1): 219-226.
  • 6Boukouvalas C, Petrou M. Perceptual correction for colour grading using sensor transformations and metameric data [J].Machine Vision and Applications, 1999, 11(2): 96-104.
  • 7Boukouvalas C, Petrou M. Perceptual correction for colour grading of random textures[J]. Machine Vision and Applications, 2000, 12(3): 129-136.
  • 8Kukkonen S, Kalviainen H, Parkkinen J. Color features for quality control in ceramic tile industry[J]. Optical Engineering,2001, 40(2):170-177.
  • 9Lu Q, Srikanteswara S, King W, et al. Machine vision system for color sorting wood edge-glued panel parts[A]. In:Proceedings of 23rd International Conference on Industrial Electronics, Control and Instrumentation [C ], New Orleans,USA, 1997, 3: 9-14.
  • 10Lu Qiang, Conners R W, Kline D E, et al. A real-time algorithm for color sorting edge-glued panel parts [A]. In: Proceedings of International Conference on Image Processing[C], Santa Barbara, CA USA, 1997, 1: 822-825.

同被引文献101

引证文献12

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部