期刊文献+

隐式曲面的快速适应性多边形化算法 被引量:10

Rapid Polygonization of Implicit Surface Based on Adaptive Subdivision
在线阅读 下载PDF
导出
摘要 通过将隐式曲面多边形化过程分为“构造”和“适应性采样”两个阶段 ,实现了隐式曲面多边形逼近网格的适应性构造 通过基于空间延展的MarchingCubes方法得到隐式曲面较为粗糙的均匀多边形化逼近 ,根据曲面上的局部曲率分布 ,运用适应性细分规则对粗糙网格进行细分迭代 ,并利用梯度下降法将细分出的新顶点定位到隐式曲面上 ;最终得到的多边形网格是适应性的单纯复形网格 ,其在保持规定逼近精度的前提下 ,减少了冗余三角形的产生 ,网格质量有明显改善 This paper describes an adaptive and efficient algorithm for polygonization of implicit surfaces The algorithm covers two steps: initial polygonization and adaptive refinement In the first step, an initial coarse triangular mesh is created from the implicit surface using a variation of the traditional Marching Cubes Algorithm And then in the second step, the triangles in the coarse mesh are recursively subdivided by employing a sampling rate that varies spatially according to local complexity of the surface The vertices newly created in the refined mesh are projected onto the implicit surface by gradient-descending method Consequently, the algorithm produces the minimum number of polygons required to approximate the surface with a desired precision and the final mesh is simplicial complex Our algorithm can be used in the real-time environment of visualization to implicit surfaces
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2004年第11期1511-1516,共6页 Journal of Computer-Aided Design & Computer Graphics
关键词 隐式曲面 多边形化 适应性细分 网格生成 implicit surface polygonization adaptive subdivision mesh generation
  • 相关文献

参考文献18

  • 1Bloomenthal J. Polygonization of implicit surfaces [J]. Computer Aided Geometric Design, 1988, 5(4): 341~355
  • 2Pasako A, Adzhiev V, Sourin A, et al. Function representation in geometric modeling: Concepts, implementation and applications [J]. The Visual Computer, 1995, 2(8): 429~446
  • 3王强,马利庄.平行断层轮廓线的RBF隐函数曲面造型[J].计算机辅助设计与图形学学报,2002,14(9):857-860. 被引量:9
  • 4Bloomenthal J. An implicit surface polygonizer [A]. In: Graphics Gems IV [C]. New York: Academic Press, 1994. 324~349
  • 5Frédéric T, Philippe M, et al. Fast polygonization of implicit surfaces [A]. In: Winter School of Computer Graphics, Plzen, Czech Republic, 2001. 283~290
  • 6Bloomenthal J. Chapter 4: Surface tiling [A]. In: Introduction to Implicit Surfaces [C]. San Francisco: Morgan Kaufmann Publisher, 1997
  • 7Hart J C. Ray tracing implicit surfaces [A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Anaheim, California,1993. 1~15
  • 8Allgower E, Schmidt P. An algorithm for piecewise-linear approximation of an implicitly defined manifold [J]. Journal of Numerical Analysis, 1985, 22(2): 322~346
  • 9Wyvill G, McPheeters C, Wyvill B. Data structure for soft objects [J]. The Visual Computer, 1986, 2(4): 227~234
  • 10Wyvill B, McPheeters C, Wyvill G. Animating soft objects [J]. The Visual Computer, 1986, 2(4): 235~242

二级参考文献2

共引文献10

同被引文献101

  • 1左力,李锦涛,王兆其.基于轴变形技术的实时人体肌肉变形[J].计算机科学,2002,29(z2):149-152. 被引量:1
  • 2柯映林,范树迁.基于点云的边界特征直接提取技术[J].机械工程学报,2004,40(9):116-120. 被引量:55
  • 3张三元,查红彬,鲍虎军,叶修梓.数字几何处理及其应用的最新进展[J].计算机辅助设计与图形学学报,2005,17(6):1129-1138. 被引量:9
  • 4王文成,魏峰,吴恩华.绘制大规模场景的可见性计算技术[J].计算机辅助设计与图形学学报,2006,18(2):161-169. 被引量:10
  • 5Allgower E,Schmidt P.An algorithm for piecewise-linear approximation of an implicitly defined manifold[J].Joumal of Numerical Analysis, 1985;22(2) :322-346.
  • 6Bloomenthal J.Polygonization of implicit surfaces[J].Computer aided geometric design, 1988;5(4) :341-355.
  • 7Wyvill B,McPheeters C,Wyvill G.Animating soft objects[j].The Visual Computer, 1996;2(4) :235-242.
  • 8Akkouche S, Galin E. Adaptive implicit surface polygonization using marching triangles [J]. Computer Graphic Forum, 2001, 20(2): 67-80.
  • 9Bernardini F, Mittleman J, Rushmeier H. The ballpivoting algorithm for surface reconstruction [J]. IEEE Trans on Visualization and Computer Graphics, 1999, 5(4): 349-359.
  • 10Figueiredo L H, Gomes J M, Terzopoulos D, et al. Physically-based methods for polygonization of implicit surfaces [C] //Proc of Graphics Interface'92. San Francisco: Morgan Kaufmann, 1992:250-257.

引证文献10

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部