期刊文献+

基于内容的图像检索中的相关反馈技术发展 被引量:2

The Development of the Relevance Feedback Technology in Content-Based Image Retrieval
在线阅读 下载PDF
导出
摘要 早期的基于内容的图像检索系统以图像处理技术为中心,研究重点集中在视觉特征的选择和提取方面,而没有充分考虑到人们在视觉方面的主观性和广泛使用的高层次语义概念和低层次视觉特征之间的相关性。为了解决上述问题,相关反馈这项技术被引入到基于内容的图像检索中来。本文介绍了相关反馈的发展,着重阐述了相关反馈技术的各种算法以及其在CBIR中的应用,并对相关反馈的发展方向进行了讨论。 The early content-based image retrieval system is image processing technology-centric, and the focus of the study is selection and extraction of visual features, which don't take the correlation between the visual subjectivity and high-level semantic concepts into account fully. To solve it, the relevance feedback technology is introduced to the content-based image retrieval system. This paper introduces the development of relevance feedback, and we put emphasis on illuminating various algorithms and their applications in CBIR. Finally, the prospect of this technology is also discussed.
出处 《计算机科学》 CSCD 北大核心 2004年第7期200-202,共3页 Computer Science
关键词 内容 图像检索 反馈技术 贝叶斯分类 SVM 支持矢量机 Content-based image retrieval, Relevance feedback,Bayesian classifier,SVM
  • 相关文献

参考文献22

  • 1[1]Rui Y, Huang T S, Ortega M, et al. Relevance feedback: A power tool for interactive content-based image retrieval. IEEE Trans on Circuits and Video Technology, 1998,8(5)
  • 2[2]Cox I, Miller M, Omohundro S M,et al. Pichunter: Bayesian relevance feedback for image retrieval system. In: Int'l Confon Pattern Recognition. Vienna, Austria, 1996.361~369
  • 3[3]Vasconcelos, Lippman A. Bayesian representations and learning mechanisms for content based image retrieval. In: SPIE Storage and Retrieval for Media Databases. San Jose, CA, 2000
  • 4[4]Rui Y,Huang T S. A Novel Relevance Feedback Technique in Image Retrieval. ACM Multimedia, 1999
  • 5[5]Su Zhong,Zhang Hongjiang. Using Bayesian Classifier in Relevant Feedback of Image Retrieval
  • 6[6]Qian Fang,Li Mingjing, Zhang Lei. Gaussian Mixture model for relevance feedback in image retrieval
  • 7[7]Lee C,Ma W Y, Zhang H J. Information Embedding Based on User's relevance Feedback for Image Retrieval: [ Technical Report HP Laps]. 1998
  • 8[8]Wood M E J, Campbell N W, Thomas B T. Iterative refinement by relevance feedback in content-based digital image retrieval. In:Proc. of the 6th ACM Int'l Conf on Multimedia'98. Bristol, England, 1998
  • 9朱兴全,张宏江,刘文印,吴立德.iFind:一个结合语义和视觉特征的图像相关反馈检索系统[J].计算机学报,2002,25(7):681-688. 被引量:34
  • 10[10]Flickner M, et al. Query by Imageand video content: the QBIC system. IEEE Computer, 1995,28(9) :23~32

二级参考文献12

  • 1Rui Y,Proc ACM Multimedia'99,1999年,67页
  • 2Lee C,SPIE Symposium on Voice Video and Data Communications Multimedia Storage and Archiving Systems IV,1999年,20页
  • 3Rui Y,IEEE Trans Circuits and Systems for Video Technology,1998年,8卷,5期,644页
  • 4Rui Y,Invited Paper in Int Symposium on Multimedia Information Processing,1997年
  • 5Smith J,Proc the 4th ACM Multimedia Conference,1996年,87页
  • 6Cox I J,Miller M L,Minka T P et al.The Bayesian image retrieval system, PicHunter: Theory, implementation, and psychophysical experiments[].IEEE Transactions on Image Processing.2000
  • 7Salton G,McGill M J.Introduction to Modern Information Retrieval[]..1983
  • 8Zhu X Q,Zhang H J,HU C H et al.A new query refinement and semantic integrated image retrieval system with semi -automatic annotation scheme[].Journal of Electrocardiology.2000
  • 9Lee C,Ma W Y,Zhang H J.Information embedding based on user ’s relevance feedback for image retrieval[]..1998
  • 10张铃,张钹.M-P神经元模型的几何意义及其应用[J].软件学报,1998,9(5):334-338. 被引量:135

共引文献52

同被引文献17

  • 1王旭红,周明全,耿国华.遥感影像信息挖掘的框架研究[J].计算机应用与软件,2006,23(6):16-18. 被引量:3
  • 2Datta R, Joshi D, Li J, et al. Image retrieval: ideas, influences, and trends of the new age [J]. ACM Computing Surveys, 2008, 40(2):1-60.
  • 3Zhou X, Huang T S. Relevance feedback in image retrieval: a comprehensive review[J]. Multimedia Systems, 2003, 8 ( 6 ) : 536-544.
  • 4Rocchio J J. Relevance feedback in information retrieval[M]. Salton G. The SMART System. New York: Prentice-Hall, 1971: 313-323.
  • 5Ves E, Domingo J, Ayala G. A novel Bayesian framework for relevance feedback in image content-based retrieval system [J]. Pattern Recognition, 2006,39 : 1622-1632.
  • 6Chen Y X, Wang J Z, Krovetz R. CI.UE: cluster-based retrieval of images by unsupervised learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,14 ( 8 ) : 1187-1201.
  • 7Tong S, Chang E. Support vector machine active learning for image retrieval [C] //Proc. ACM Int. Conf. Multimedia. Ottawa, Canada:ACM Press,2001 : 107 118.
  • 8Brinker K. Incorporating diversity in active learning with supporl vector machines [C]//Proe. Int. Conf. Machine Learning. Washington, DC AAAI Press, 2003 : 59-66.
  • 9Wang L, Chan K L, Zhang Z. Bootstrapping SVM active learning by incorporating unlabelled images for image retrieval [C] // Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition. Madison, Wisconsin: IEEE Press, 2003 : 629-634.
  • 10Hoi S C H,Rong J,Zhu J K,et al. Semi-supervised SVM batch mode active learning and its applications to image retrieval [J]. ACM Transactions on Information Systems, 2009,27(3):1-29.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部