期刊文献+

基于数学形态学的弱点状运动目标的检测 被引量:13

Algorithm based on mathematical morphology for dim moving point target detection
原文传递
导出
摘要 提出了一种新的基于数学形态学的红外图像序列中弱点状运动目标的非参数检测算法。采用数学形态学抑制背景杂波干扰和增强目标,用沿时间轴投影和二维空域搜索代替复杂的时空三维搜索形成组合帧,然后在每条可能的轨迹上将进行目标能量累加,实现了一种快速检测前跟踪(TBD)检测算法。仿真实验表明:在恒虚警概率条件下,该检测算法能高效地检测信噪比约为2的弱点状运动目标,检测性能对噪声分布不敏感,能精确地得到目标的即时位置和速度信息,适合于实时图像处理和目标探测,具有很高的实用价值。 A new nonparametric algorithm based on mathematical morphology is proposed for the detection of dim moving point target in infrared image sequence. The mathematical morphology method is used for background clutter suppression and target enhancement. In order to get a quick tracking-before-detection algorithm, the 3D spatio-temporal scanning for target is reduced to 2D space hunting by means of integration of the image sequence output after background suppression which can produce a composite frame of images. From the simulation results of real infrared images, the algorithm can successfully detect dim moving point target with the signal-to-noise ratio equaling 2 and obtain its real-time position and velocity information accurately under the condition of constant false-alarm probability(CFAR). The algorithm useful in many practical applications is insensitive to the changes of noise's statistical distribution and adaptable to real-time image processing and target detection.
出处 《光学技术》 CAS CSCD 2004年第5期600-602,共3页 Optical Technique
关键词 数学形态学 非参数方法 红外图像序列 弱点状运动目标 目标探测 mathematical morphology nonparametric algorithm infrared image sequence dim moving point target target detection
  • 相关文献

参考文献9

  • 1[1]Charlene E C, Jerry S, Jonathan M M. Optimization of point target tracking filters[J]. IEEE Transactions on AES, 2000,36(1):15-25.
  • 2[2]Reed I S, Gagliardi R M, Stotts L B. A recursive moving-target-indication algorithm for optical image sequences[J]. IEEE Transactions on AES,1990,26(3):434-439.
  • 3[3]Barniv Y. Dynamic programming solution for detecting dim moving targets[J]. IEEE Transactions on AES, 1985,AES-21:144-156.
  • 4[4]Reed I S, Gagliardi R M, Shao H M. Application of three-dimensional filtering to moving target detection[J]. IEEE Transactions on AES,1983,19(6):898-905.
  • 5[5]Chu P L. Optimal projection for multidimensional signal detection[J]. IEEE Transactions on Acoustics, Speech and Signal Proceeding, 1988,36(5):775-786.
  • 6[6]Shirvaikar M V, Trivedi M M. A neural network filter to detect small targets in high clutter backgrounds[J]. IEEE Transactions on neural networks, 1995,6(1),252-257.
  • 7[7]Askar H, LI X F, LI Z M. Performance analysis of dim moving point target detection algorithms[J]. IEEE International Conference on Communications, Circuits and Systems and West Sino Expositions, 2002, 1:605-609.
  • 8沈宇键,何昕,郝志航.图象序列中检测运动小目标的递归算法[J].光电工程,2000,27(2):9-13. 被引量:18
  • 9[9]Askar H, LI X F, LI Z M. Background clutter suppression and dim moving point targets detection using nonparametric method[J]. IEEE International Conference on Communications, Circuits and Systems and West Sino Expositions, 2002,2 :982-986.

共引文献17

同被引文献72

引证文献13

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部