摘要
应用小波变换和非线性动力学方法研究了混沌信号在相空间中的行为 ,指出混沌时间序列的小波变换实质上是在重构的相空间中 ,混沌吸引子向小波滤波器向量所张的空间中的投影 ,与Packard等人提出的相空间重构方法本质上是一致的 .实验结果表明 ,混沌信号经过小波变换后 ,吸引子轨迹与原有轨迹具有相似的结构 ,同时 ,系统的关联维数、Kolmogorov熵等非线性不变量仍然得到保留 .这些结果表明 。
Using the methods of the wavelet transform and the nonlinear dynamics, the behavior of chaotic signals in phase space is studied. It is indicated that, in phase space reconstruction, the wavelet transform of chaotic time series is essentially a projection of strange attractor on the axis of the space that filter vectors opened, which in correspondance with the method of phase space reconstruction proposed by Packard et al. The experimental results show that, after doing wavelet transform, the architecture of attractor trajectory is similar to the original one, and the nonlinear invariants such as correlation dimension and Kolmogorov entropy are reserved. These results show that wavelet transform is effective for studying chaotic signal.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2004年第9期2882-2888,共7页
Acta Physica Sinica
基金
福建省自然科学基金 (批准号 :C0 3 10 0 2 8)资助的课题~~
关键词
小波变换
混沌信号
相空间重构
脑电信号
非线性科学
wavelet transform, phasespace reconstruction, chaotic signal, electroencephalogram (EEG)