期刊文献+

遗传算法中基于优良个体特征模式的方向变异算子 被引量:1

A genetic agorithm research of direction-mutation method based on better individuals character schema
在线阅读 下载PDF
导出
摘要 提出了一种基于优良个体特征模式的方向变异(DM)算子以改进标准遗传算法的随机变异,它不仅能提高种群的多样性,增强其在解空间的搜索能力,也能提高遗传算法的收敛速度.在对多峰值函数的优化时,将该算法和标准遗传算法结果比较,表明该算法有良好的稳定性. This paper proposes a new direction - mutation (DM) method based on better individual, which replace the random mutation in SGA (standard genetic algorithm). This algorithm can not only improve the speed of convergence, but also enlarge the multifamily of the population, so the optimizing resolution can be obtained in global. According to the result of test, the algorithm has been proved that it is more effective and more feasible than the SGA.
出处 《上海师范大学学报(自然科学版)》 2004年第3期43-47,共5页 Journal of Shanghai Normal University(Natural Sciences)
关键词 遗传算法 多峰值函数 适应度 小生境 分段海明距离 genetic algorithm multi-peak-value adaptability optimizing resolution nicked segment-hamming
  • 相关文献

参考文献5

二级参考文献38

  • 1李未,黄文奇.一种求解合取范式可满足性问题的数学物理方法[J].中国科学(A辑),1994,24(11):1208-1217. 被引量:21
  • 2席裕庚,柴天佑,恽为民.遗传算法综述[J].控制理论与应用,1996,13(6):697-708. 被引量:354
  • 3刘祖洞.遗传学(下册)[M].北京:高等教育出版社,2000.1-226.
  • 4陈国良.并行算法设计与分析[M].北京:高等教育出版社,1994.1-13.
  • 5Gen M, Cheng Runwei. Genetic algorithms and engineering design. New York: Wiley-Interscience, 2000
  • 6Gen M,Cheng Runwei. Genetic algorithms and engineering optimization. New York: Wiley-Interscience, 2000
  • 7Herrera F,Verdegay J L. Genetic algorithms and soft computing.Heidelberg Physica-Verlag, 1996
  • 8Man K F,Tang K S,Man S K. Genetic algorithms: concepts and designs London; New York: Springer, 1999
  • 9Michalewicz Z,Dasgupta D,et al. Evolutionary algorithms for industrial engineering problems. International Journal of Computers & Industrial Engineering, 1996,30 (4)
  • 10Glover F, Greenberg H. New approaches for heuristic search: A bilateral linkage with artificial intelligence. European Journal of Operational Research, 1989,39:119~ 130

共引文献291

同被引文献16

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部