期刊文献+

基于规则的电子商务推荐系统模型和实现 被引量:11

Rule-based recommendation system model and its implementation
在线阅读 下载PDF
导出
摘要 针对电子商务推荐系统本质上要解决的三个问题———数据源、数据模型和推荐策略,结合最新报道的相关推荐系统,提出并在实验室条件下实现了一个推荐系统原型。为提高该推荐系统的的通用性,采用顾客购买历史这种数据源格式,而不是常见的用户评分数据;另外,为保证产生足够的推荐结果并提高其质量,用关联规则和序列规则结合的方法来构建推荐系统引擎,并设计了一个基于一次表扫描时间的推荐策略。最后,从定性和定量两方面说明该推荐系统效率高,有更好的推荐质量。 Based on the emerging relevant recommendation systems, a rule-based recommendation system prototype was implemented. Its contributions focused on coping with three essential issues to develop a recommendation system: data source, data model and recommendation strategy as a whole. To improve its flexibilities, the system employed customers' purchase histories as data source, but not the commonly-used user ratings. In addition, to ensure the quantity and quality of recommendations, its underlining engine was built up on an association-sequential-rule model. A recommendation strategy based on one-round table scanning was also designed to improve the response delay. Laboratory experiment results show that this recommendation system produces a better outcome in both efficiency and quality.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2004年第8期898-902,共5页 Computer Integrated Manufacturing Systems
基金 广东省自然科学基金资助项目(031539)。~~
关键词 数据挖掘 规则挖掘 电子商务 推荐系统 data mining rule mining e-commerce recommendation system
  • 相关文献

参考文献17

  • 1SCHAFER J B ,KONSTAN J A,RIEDL J. E-commerce recommendation applications[J]. Data Mining and Knowledge Discovery, 2001,5(1/2): 115 - 153.
  • 2KOHAVI R,PROVOST F J. Applications of data mining to electronic commerce[J]. Data Mining and Knowledge Discovery,2001,5(1/2) :5- 10.
  • 3SPILIOPOULOU M,POHLE C. Data mining for measuring and improving the success of web sites[J]. Data Mining and Knowledge Discovery, 2001, 5(1/2): 85- 114.
  • 4ADOMAVICIUS G,TUZHILIN A. Expert-driven validation of rule-Based user models in personalization applications[J].Data Mining and Knowledge Discovery,2001,5(1/2) :33-58.
  • 5LAWRENCE R D, ALMASI G S, KOTLYAR V, et al. Personalization of supermarket product recommendations[J]. Data Mining and Knowledge Discovery, 2001,5 (1/2) : 11 - 32.
  • 6LEE J,PODLASECK M,SCHONBERG E,et al. Visualization and analysis of clickstream data of online stores for understanding web merchandising[J]. Data Mining and Knowledge Discovery, 2001,5( 1/2): 59- 84.
  • 7ANSARI S,KOHAVI L,MASON Z,et al. Integrating e-commerce and data mining: architecture and challenges[A]. Proceedings of the 2001 IEEE International Conference on Data Mining[C]. California, USA: IEEE Computer Society Press, 2001.27-34.
  • 8MOONEY R J, ROY L. Content-based book recommending using learning for text categorization[A]. Proceedings of 5th ACM Conference on Digital Libraries[C]. New York, USA:ACM Press,2000. 195-204.
  • 9KARYPIS G. Evaluation of item-based top-n recommendation algorithms[A]. Proceedings of the 10th International Conference on Information and Knowledge Management[C].NewYork,USA:ACM Press,2001. 247- 254.
  • 10CHEE S H S, HAN J,WANG K. RecTree:an efficient collaborative filtering method[J]. Lecture Notes in Computer Science,2001,2114: 141- 151.

同被引文献81

引证文献11

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部