期刊文献+

S^G类图簇的伴随多项式的因式分解及色性分析 被引量:10

The Factorization of Adjoint of Polynomials SG- class Graphs and Chromatically Equivalence Analysis
在线阅读 下载PDF
导出
摘要 设G是任意的p阶连通图,V(G)={V1,V2…,Vp},Sn+1是具有度序列(n,1,1,…,1)的n+1阶星图.令(ψ)G(i)(n,p)表示图G的第i个顶点与Sn+1的n度点重迭后得到的图;SG(i)rp+1表示rG的每个分支的第i个顶点依次与Sr+1的r个1度点重迭后得到的图,这里n≥1,p≥r≥2,1≤i≤p.我们通过研究图的伴随多项式的因式分解,证明了两个图簇SG(irp+1∪(r-1)K1与(r-1)G∪ψG(i)(r,p)的补图是色等价的,但它们均不是色唯一的,从而推广了张秉儒证明的文[14]中的定理1. Let G be an arbitrary connected graph with p vertices and V(G) = {V1, V2,…, Vp}, and let Sn+1 be a star having degree sequence (n, 1,…, 1) with n + 1 vertices. We denote by ψG(i)(n,p) the graph consisting of G and Sn+1 by coinciding the ith vertex of G with the vertex of degree n of Sn+1, and let Srp+1G(i) denote the graph obtained from rG and Sr+1 by coinciding the ith vertex of each component of rG with r vertices of degree 1 of Sr+1, respectively, (where (n ≥ l,p ≥ r ≥ 2,1 ≤ i ≤ p). By studying the factorization of adjoint polynomials of graphs, we prove two graphs Srp+1G(i)∪(r - 1)K1 and (r-1l)G∪ψG(i)(r,p) that their complements are chromatically equivalent, but everyone does not be chromatically unique. We improve Theorem 1 by Zhang Bing-ru in [14].
作者 张秉儒
出处 《数学进展》 CSCD 北大核心 2004年第4期425-433,共9页 Advances in Mathematics(China)
基金 国家自然科学基金资助项目
关键词 色多项式 伴随多项式 因式分解 色等价性 非色唯一图 chromatic polynomial adjoint polynomial factorization chromatically equiv- alence chromatically non-unique graph
  • 相关文献

参考文献1

  • 1K. M. Koh,K. L. Teo. The search for chromatically unique graphs[J] 1990,Graphs and Combinatorics(3):259~285

同被引文献18

  • 1张秉儒.图的伴随多项式的因式分解定理及应用[J].数学学报(中文版),2005,48(1):125-132. 被引量:22
  • 2刘儒英.P_(q-1)的补图的色唯一性[J].Journal of Mathematical Research and Exposition,1994,14(3):469-472. 被引量:39
  • 3郭玉琳,张秉儒.若干图簇的伴随多项式的因式分解及色性分析[J].数学的实践与认识,2005,35(9):167-172. 被引量:4
  • 4刘儒英.求图的色多项式的一种新方法及应用[J].科学通报,1987,32:1508-1509.
  • 5Body J A,Murty U S R.Graph Theory with Applications[M].Amsterdam:North-Holland,1976.
  • 6Bollobas B.Modern Graph Theory[M].New York:Spinger-Verlag,1998.
  • 7Chao C Y,Whitehead E G.On Chromatic Equivalance of Graph[J].Springer Lecture Note in Mathematics,1978(642):121~131.
  • 8Koh K M,Teo K L.The Search for Chromatically Unique Graphs[J].Graph Combin,1990(6):259~285.
  • 9Liu R Y.Adjoint Polynomials and Chroma ticall Unique Graphs[J].Discrete Mathematics,1997(172):85~92.
  • 10Read R C.An Introduction to Chromatic Polynomials[J].Combin Theory,1968(4):52~71.

引证文献10

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部