期刊文献+

平稳更新模型下生存概率的一个局部等价式 被引量:14

原文传递
导出
摘要 将唐启鹤在索赔额为重尾分布场合建立的关于Cramer-Lundberg模型生存概率的局部等价公式推广到平稳更新场合.
作者 江涛 陈宜清
出处 《中国科学(A辑)》 CSCD 北大核心 2004年第4期385-391,共7页 Science in China(Series A)
基金 国家统计科学研究计划资助项目(批准号:LX0317)
  • 相关文献

参考文献15

  • 1Embrechts P, Kluppelberg C, Mikosch T. Modelling Extremal Events for Insurance and Finance. Berlin:Springer-Verlag, 1997
  • 2Ross S M. Stochastic Processes. New York: John Wiley & Sons Inc, 1983
  • 3Grandell J. Aspects of Risk Theory. New York: Springer-Verlag, 1991
  • 4Rolski T, Schmidli H, Schmidt V, et al. J Stochastic Processes for Insurance and Finance. Chichester:John Wiley & Sons, Ltd, 1999
  • 5Willmot G E, Dickson D C M. The Gerber-Shiu discounted penalty function in the stationary renewal risk model. Insurance: Mathematics and Economics, 2003, 32(3): 403-41117.参见第387页脚注1
  • 6Asmussen S. Ruin Probabilities.River Edge, NJ: Word Scientific Publishing Co, Inc, 2000
  • 7Kluppelberg C. Subexponential distributions and integrated tails. J Appl Probab, 1988, 25(1): 132- 141
  • 8Embrechts P, Veraverbeke N. Estimates for the probability of ruin with special emphasis on the possibility of large claims. Insurance: Mathematics and Economics, 1982, 1:55-72
  • 9Asmussen S, Foss S, Korshunov D A. Asymptotics for sums of random variables with local subexponential behaviour. J Theor Probab, 2003, 16(2): 489-518
  • 10Ng K W, Tang Q H. Asymptotic behavior of tail and local probabilities for sums of subexponential random variables. J Appl Probab, 2004, 41(1): 108-116

二级参考文献17

  • 1苏淳,唐启鹤,江涛.A contribution to large deviations for heavy-tailed random sums[J].Science China Mathematics,2001,44(4):438-444. 被引量:27
  • 2[1]Embrechts P, Klippelberg C, Mikosch T. Modelling Extremal Events for Insurance and Finance. Berlin:Springer, 1997
  • 3[2]Ross S M. Stochastic Processes. New York: Wiley, 1983
  • 4[3]Rolski T, Schmidli H, Schmidt V, et al. Stochastic Proceases for Insurance and Finance. New York: Wiley,1999
  • 5[4]Asmussen S. Ruin Probabilities. Singapore: World Scientific, 2000
  • 6[5]Kluppelberg C. Subexponential distributions and integrated tails. J Appl Prob, 1988, 25:132~141
  • 7[6]Embrechts P, Veraverbeke N. Estimates for the probability of ruin with special emphasis on the possibility of large claims. Insurance: Mathematics and Economics, 1982, 1:55~72
  • 8[7]Tang Q H, Su C. Ruin probabilities for large claims in delayed renewal risk model. Southeast Asian Bull Math, 2001, 25(4): 280~286
  • 9[8]Asmussen S. Subexpontential asymptotics for stochastic processes: extremal behavior, stationary distributions and first passage probabilities. The Ann of Appl Prob, 1998, 8:354~374
  • 10[9]Asmussen S. Applied Probability and Queues. Chichester, New York: John Wiley & Sons, 1987

共引文献28

同被引文献70

引证文献14

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部