摘要
目的 制备活性炭纤维 (AFC)涂层电极 ,研究电解产氢的自养反硝化法去除地下水中的硝酸盐氮。方法 采用挂膜培养以及PVA包埋的方法 ,将异养反硝化菌固定在ACF电极表面 ,制成ACF涂层电极。结果 涂层电极中的异养反硝化菌经过驯化后 ,可用于去除模拟水样中的NO- 3 N。在生物电化学反应器中 ,当NO-3 N初始浓度为 30 7mg L ,电流强度为 1 0mA时 ,水样经过 1 2小时的处理后 ,脱氮率达到 38 4 % ,生物电化学反应器的容积负荷为 2 3 6gNO-3 N (m3·d) ,涂层电极的面积负荷为 0 92gNO-3 N (m2 ·d)。在同等条件下 ,ACF电极微电解以及涂层电极内源性反硝化作用的脱氮率分别为 3 7%和 2 8%。在涂层电极上进行的反硝化作用中 ,内源性反硝化作用约占 7%。结论 活性炭纤维比表面积大、表面粗糙 ,适合反硝化菌附着生长。包埋了反硝化细菌的PVA凝胶能牢固地粘附在活性炭纤维表面 ,可制成PVA凝胶涂层电极。涂层电极中的异养反硝化菌经过驯化培养后 。
Objective A coated electrode of immobilized denitrifying bacteria was developed to study the feasibility of electrochemical denitrification. Methods The coated electrode of denitrifying bacteria was made by batch cultivation and PVA immobilization using activated carbon fiber (ACF). The coated ACF electrode was used as cathode, while graphite as anode in bioelectrochemical reactor. Results After having been acclimated in two stages, mixotrophic and autotrophic denitrification stages, the denitrifying bacteria could use hydrogen as electron donor to reduce nitrate. When the initial nitrate concentration was 30 7mg NO - 3 N/L, the denitrification rate was 38 4% at an applied electric current of 10mA and a hydraulic retention time of 12 hours. Conclusion With great surface area and a rough surface, it was very easy to develop a biofilm on ACF. The membrane of PVA gel could adhere to the surface of ACF firmly. After having been acclimated, the denitrifying bacteria could use hydrogen generated by the electrolysis of water to be treated as electron donor to reduce nitrate.
出处
《卫生研究》
CAS
CSCD
北大核心
2004年第4期407-409,共3页
Journal of Hygiene Research
基金
国家自然科学基金资助项目 (No .39870 664)
关键词
生物电化学反应器
固定化微生物
电解
涂层电极
自养反硝化
bio electrochemical reactor, immobilized microorganism, electrolysis, coated electrode, autotrophic denitrification