期刊文献+

用改进的MUSIC算法实现相干多径信号分离 被引量:6

Separation of coherent multi-path signals with improved MUSIC algorithm
在线阅读 下载PDF
导出
摘要 基于特征值分解的MUSIC算法是建立在非相干信号模型基础之上的,对于相干多径信号,MUSIC算法将会失效。与传统的拟补空间协方差矩阵秩亏损的空间平滑去相关法不同,从另一个角度出发,通过特殊的天线阵列模型,重构一个Toeplitz矩阵,使其秩只与信号的波达方向有关,而不受信号相关性的影响,从而达到去相关的目的,并对信号子空间和噪声子空间作出正确的估计。仿真结果验证了该方法的有效性,且较传统的空间平滑方法具有更低的信噪比门限和更小的运算量。 The MUSIC algorithm, which is based on the eigenvalue decomposition and has excellent performance and high efficiency, can provide very high resolution and asymptotically unbiased DOA estimation. However, the MUSIC algorithm is constructed on the model of uncorrelated signals and will be ineffect on coherent multi-path signals. Unlike the conventional 'spatial smoothing techniques' which attempt to eliminate the rank loss of the spatial covariance matrix, the presented method, from another point of view, reconstructs a special antenna-array-model-based Toeplitz matrix whose rank is only related to the DOA of signals and will not be affected by the coherency between the signals, thus the signal subspace and the noise subspace can be estimated properly. The computer simulation shows that it is effective and has lower SNR threshold and less computational burden than conventional 'spatial smoothing techniques'.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2004年第6期721-723,763,共4页 Systems Engineering and Electronics
关键词 MUSIC算法 相干多径信号 超分辨 MUSIC algorithm coherent multi-path signals high resolution
  • 相关文献

参考文献7

  • 1Schmidt R O. Multiple Emitter Location and Signal Parameter Estimation[J]. IEEE Trans. on AP., 1986, AP-34: 276-280.
  • 2Roy R, Kailath T. ESPRIT--Estimation of Signal Parameters via Rotational Invariance Techniques[J]. IEEE Trans. on ASSP, 1989, l37: 984-995.
  • 3Lai W K, Ching P C. A New Approach for Coherent Direction-of-Arrival Estimation[J]. ISCAS' 98. Proceedings of the 1998 IEEE International Symposium on, Circuits and Systems, 1998,5:9-12.
  • 4Haber F, Zoltowski M. Spatial Spectrum Estimation in a Coherent Signal Environment Using an Array in Motion[J]. IEEE Trans. on AP., 1986,3: 301-310.
  • 5Krim H, Viberg M. Two Decades of Array Signal Processing[J]. IEEE Signal Processing Magazine, 1996,13(4): 67-94.
  • 6Naidu Prabhakar S. Sensor Array Singal Processing[M]. Florida: CRC Press, 2001.
  • 7高世伟,保铮.一种用于相干和不相干窄带信号源高分辨的广义信号子空间估计方法[J].电子学报,1990,18(4):42-49. 被引量:7

二级参考文献6

  • 1路鸣,电子学报,1990年,1期
  • 2高世伟,电子学报,1989年,1期
  • 3高世伟,通信学报,1988年,1期
  • 4高世伟,西北电讯工程学院学报,1988年,1期
  • 5孙继广,矩阵扰动分析,1987年
  • 6王国荣,矩阵计算引论,1980年

共引文献6

同被引文献35

  • 1穆世强,陈天麒.圆阵中相干信号的高分辨阵列测向技术[J].电子科技大学学报,1993,22(4):350-355. 被引量:5
  • 2齐崇英,王永良,张永顺,陈辉.色噪声背景下相干信源DOA估计的空间差分平滑算法[J].电子学报,2005,33(7):1314-1318. 被引量:18
  • 3SHAN T J,WAX M,KAILATH T.On spatial smoothing for direction-of-arrival estimation of coherent signals[J].IEEE ASSP,1985,33(4):806-811.
  • 4PILLAI S U,KWON B H.Forward/backward spatial smoothing techniques for coherent signal identification[J].IEEE ASSP,1989,37(1):8-15.
  • 5DI A.Multiple sources location-a matrix decomposition approach[J].IEEE ASSP,1985,33(4):1086-1091.
  • 6HAN F M,ZHANG X D.An ESPRIT-like algorithm for coherent DOA estimation[J].IEEE Antennas and Wireless Propagation Letters,2005,4(1):1086-1091.
  • 7PHAM D T,CARDOSO J.Blind separation of instantaneous mixtures of nonstationary sources[J].IEEE Trans on Signal Processing,2001,49(9):1837-1848.
  • 8HARRY L,TREES V.Optimum Array Processing.Part IV of Detection,Estimation,and Modulation Theory[M].John Wiley & Sons,Inc,2002.704-720.
  • 9TUFTS D W,KUMARESAN R.Estimation of frequencies of multiple sinusoids:making linear prediction perform like maximum likelihood[J].IEEE Proc,1982,70(9):975-989.
  • 10Schmidt R O. Multiple emitter location and signal parameter estimation [J].IEEE Trans. on AP, 1986, 34(2): 276-280.

引证文献6

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部