期刊文献+

非平整、多孔介质海底上波浪传播的复合方程 被引量:1

COMPOSITE EQUATIONS OF WATER WAVES OVER UNEVEN AND POROUS SEABED
在线阅读 下载PDF
导出
摘要 为了反映近岸区域实际存在的多孔介质海底效应,并且考虑到波浪在刚性海底上传播模型的最新研究进展,运用Green第二恒等式建立了波浪在非平整、多孔介质海底上传播的复合方程,假设水深和多孔介质海底层厚度均由两种分量组成:慢变分量,其水平变化的长度尺度大于表面波的波长;快变分量,其水平变化的长度尺度与表面波的波长等阶,但其振幅小于表面波的振幅,另外,多孔介质层下部边界的快变分量比水深的快变分量小1个量级,针对水体层和多孔介质层,选择Green第二恒等式方法给出了波浪传播和渗透的复合方程,它在交接面上满足压力和垂直渗透速度的连续性条件,可充分考虑波数变化的一般连续性,并包含了某些著名的扩展型缓坡方程。 The composite equations for water waves propagating over a porous uneven bottoms are derived from Green's second identity, which incorporates the effects of porous medium in the nearshore region and considers the advances in models of water waves propagation over rigid bottoms. Assuming that both water depth and thickness of the porous layer consist of two kind of components: The slowly varying component whose horizontal length scale is longer than the surface wave length, and the fast varying component with the horizontal length scale as the surface wave length. The amplitude of the fast varying component is, however, smaller than the surface wave length. In addition, the fast varying component of the lower boundary surface of the porous layer is one order of magnitude smaller than that of the water depth. By Green's second identity and satisfying the continuous conditions at the interface for the pressure and the vertical discharge velocity the composite equations are given for both water layer and porous layer, which can fully consider the general continuity of the variation of wave number and include some well-known extended mild-slope equations.
作者 黄虎
出处 《力学学报》 EI CSCD 北大核心 2004年第4期455-459,共5页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(10272072) 中国科学院力学研究所非线性力学国家重点实验室开放课题基金 上海市重点学科建设项目资助项目~~
关键词 多孔介质 非平整海底 复合方程 Green第二恒等式 扩展型缓坡方程 porous medium uneven bottoms composite equations Green's second identity extended mildslope equations
  • 相关文献

参考文献17

  • 1Berkhoff JCW. Computation of combined refractiondiffraction. In: Proc 13rd Int Conf on Coastal Eng, Vancouver. New York: ASCE, 1972, 471~490
  • 2Kirby JT. A general wave equation for waves over rippled bed. J Fluid Mechanics, 1986, 162:171~186
  • 3Chamberlain PG, Porter D. The modified mild-slope equation. J Fluid Mechanics, 1995, 291:393~407
  • 4Madsen PA, Schaffer HA. Higher order Boussinesq-type equations for surface gravity waves --Derivation and analysis. Phil Trans Roy Soc London, 1998, A356:1~60
  • 5黄虎,丁平兴,吕秀红.三维缓变流场上波浪折射-绕射的缓坡方程[J].力学学报,2001,33(1):11-18. 被引量:5
  • 6Mase H, Takeba K, Oki S-I. Wave equation over permeable rippled bed and analysis of Bragg scattering of surface gravity waves. J Hydraulic Research, 1995, 33(6): 789~812
  • 7Rojanakamthorn S, Isobe M, Watanabe A. A mathematical model of wave transformation over a submerged breakwater. Coastal Engineering in Japan, 1989, 32(2): 209~234
  • 8Chwang AT, Chan AT. Interaction between porous media and wave motion. Annu Rev Fluid Mechanics, 1998, 30:53~84
  • 9Losada IJ. Recent advances in the modeling of wave and permeable structure interaction. In: Liu PL-F, ed.Advances in Coastal and Ocean Engineering, Singapore:World Scientific, 2001, 7:163~202
  • 10Silva R, Salles P, Govaere G. Extended solution for waves traveling over a rapidly changing porous bottom. Coastal Engineering, 2003, 30:437~452

二级参考文献4

共引文献4

同被引文献15

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部