期刊文献+

混沌Lorenz系统延迟反馈控制的机理分析 被引量:3

Analyze the time-delayed feedback control of chaotic Lorenz system
在线阅读 下载PDF
导出
摘要 利用广义Hamilton系统理论的Melnikov方法,严格分析了延迟反馈方法控制混沌Lorenz系统到周期解的机理,揭示了延迟时间与控制混沌的关系.延迟反馈项实际上是一个作用明显的扰动项,通过选择合适的参数,使得系统的稳定流形与不稳定流形不再横截相交,Smale意义下的混沌受到抑制,将Lorenz混沌系统引导到各种不同的周期轨道;可见,延迟时间关系到控制扰动量的大小,但不必是混沌吸引子内嵌不稳定周期轨道的周期整数倍.另外,通过数值仿真,其结果与理论分析相符,从而表明了该分析方法的有效性. The paper focuses on the problem of suppressing chaos in the time-delayed feedback control system. The validity of Melnikov' s method in the generalized Hamilton system perturbed by weak periodic terms and time-delay terms is discussed. The Malnikov' s technique is applied to analyze the mechanism of time-delayed feedback control for Lorenz systems. It is shown that the time-delayed feedback control in fact is a perturbation term, which with a suitable selection of parameters makes the stable manifolds no longer intersecting the unstable manifolds. Then it is revealed that the time delay can be independent of the period of the inherent unstable orbit in the chaotic attractor. Moreover, the numerical simulation results are presented to demonstrate the effectiveness of the theoretical analysis.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2004年第2期205-210,共6页 Control Theory & Applications
基金 国家自然科学基金项目(60174005) 江苏省自然科学基金项目(BK2001054).
关键词 混沌 广义Hamilton系统理论 MELNIKOV方法 LORENZ 延迟时间 chaos generalized Hamilton system Melnikov's method Lorenz delayed time
  • 相关文献

参考文献10

  • 1OITE, GREBOGIC, YORKEJA. Controlling chaos [J]. Physics Review Letters, 1990,64(11): 1196 - 1199.
  • 2USHIO T, YAMAMOTO S. Delayed feedback control with nonlinear estimation in chaotic discrete-time systems [J]. Physics Letters A,1998,247(2): 112 - 118.
  • 3CHEN G, YU X. On time-delayed feedback control of chaotic systems [J]. IEEE Trans on Circuits System-l, 1999, 46(6): 767-772.
  • 4PYRAGAS K. Continous control of chaos by self-controlling feedback [J]. Physics Letters A, 1992, 170(6) :421 - 428.
  • 5裴文江,黄俊,刘文波,于盛林.自适应延迟反馈控制混沌[J].控制理论与应用,1999,16(2):297-300. 被引量:19
  • 6HUBERMAN B A, LUMER E. Dynamics of adaptive systems [J].IEEE Trans on Circuits Systems-I, 1990,37(4): 547- 550.
  • 7CHEN G, DONG X. On feedback control of chaotic nonlinear dynamic systems [J]. lnt J of Bifurcations & Chaos, 1992,2(2) :407 - 411.
  • 8HWANG C C. A nonlinear feedback control of the Lorenz equation[J]. lnt J of Engineering Science, 1999,37 (12): 1893 - 1900.
  • 9LI J, ZHANG J. New treatment on bifurcations of periodic solutions and homoclinic orbits at high r in the Lorenz equations [J]. SIAM J of Applied Mathematics, 1993, 53(3): 1059 - 1071.
  • 10WIGGINS S. On the detection and dynamical consequences of orbits homoclinic to hyperabolic periodic orbits and normally hyperbolic invariant tori in a class of ordinary differential equations[J]. SIAM J of Applied Mathematics, 1988, 48(1) :262 - 285.

二级参考文献1

  • 1Sinha H,Phys Lett A,1991年,156卷,9期,475页

共引文献18

同被引文献28

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部