期刊文献+

不同加载方式及咬合部位对下颌骨应力分布的影响 被引量:4

Stress Distribution of Mandible under Different Loading and Biting Condition
在线阅读 下载PDF
导出
摘要 目的 研究不同的加载方式及不同的咬合部位对下颌骨 ,特别是下颌角区域应力分布的影响。方法通过建立下颌骨的机械力学模型 ,采用电阻应变片的测量方法 ,分析不同加载方式 (咬肌加载 ,颞肌加载及咬肌、颞肌、翼内肌和翼外肌四组肌肉同时加载 )以及不同咬合状态 (前牙咬合及单、双侧后牙咬合 )对下颌骨应力分布的影响。结果 在不同的加载方式的比较中 ,咬肌单独加载时 ,下颌角区域的应变明显 (上缘 1 2 1με、1 2 5με,下缘 - 6 9με、- 4 5με) ;颞肌单独加载时 ,下颌升支前缘应变明显 (2 6 9με、375με) ;四组肌肉同时加载时 ,颏部的应力性质发生改变。在不同咬合部位的比较中 ,在四组肌肉同时加载的条件下 ,前牙咬合加载时下颌角区域的应力值大于双侧后牙咬合加载 ;单侧后牙咬合时 ,咬合侧下颌角区域的应力趋势发生变化。 Objective To study the stress distribution of intact mandible, especially that of the mandibular angle under different muscle loading and biting condition. Methods Develop a more accurate, more objective mandibular model, measure the different stress patterns on the outer surface of the mandible by strain gauges due to different biting sites (INC and ICP) and different loading methods(masseter, temporalis and four pairs of muscles).Results It was found that the strain in the zone of mandibular angle is more markedly under masseter loading; that the strain in the zone of anterior mandibular ramus is more markedly under temporalis loading; and that the stress in the zone of mentum becomes a tension because of the medial pterygoid under the load of four pairs of muscles. During anterior teeth biting, the stress of mandible angle is larger than that of the bilateral molar biting. When an occlusal load is on the ipsilateral molars, there is a reversal result of the stress direction in the upper line of the mandibular angle. Conclusion Different muscular loading and biting condition can change the stress distribution of the mandible. It is important to develop a functional model of human mandible to study its complex biomechanics behavior.
出处 《四川大学学报(医学版)》 CAS CSCD 北大核心 2004年第4期516-519,共4页 Journal of Sichuan University(Medical Sciences)
关键词 下颌骨 生物力学 加载方式 Mandible Biomechanics Loading condition
  • 相关文献

参考文献10

  • 1[1]Hang RH, Street CC, Goltz M, et al. Does plate adaptation affect stability?A biomechanical comparison of locking and nonlocking plates. J Oral Maxillofac Surg, 2002;60(1):1319.
  • 2[2]Dirk Vollmer,Ulrich Meyer,Ulrich Joos,et al.Experimental and finit element study of human mandible. Journal of Cranio-Maxillofacial Surgery,2000;28(2):91.
  • 3[3]Tanne K,Tanaka E, Sakuda M. Stress distribution in the temporomandibular joint produced orthopedic chincup force applied in varying directions: A three-dimensional analytic approach with the finite element method. Am J Orthod Dentofac Orthcp,1996;110(5):502.
  • 4[4]Koolstra JH, Van Eijden TM, Weijs WA, et al. A three-dimensional mathematical model of the human masticatory system predicting maximum possible bite forces. J Biomech,1988;21(7):563.
  • 5[5]Weijs WA, Hillen B. Physiological cross-section of the human jaw muscles. Acta Anat(Basel),1985;121(1):31.
  • 6陈新民,赵云凤,向荣乡.不同状态人体牙槽骨皮质骨的拉伸力学性质研究[J].现代口腔医学杂志,1989,3(3):150-151. 被引量:7
  • 7周学军,赵志河,赵美英,樊瑜波.包括下颌骨的颞下颌关节三维有限元模型的建立[J].实用口腔医学杂志,2000,16(1):17-19. 被引量:44
  • 8[8]Champy M, Wilk A, Schnebelen JM. Treatment of mandibular fractures by means of osteosynthesis without intermaxillary immobilization according to F.X. Michelet's technic. Zahn Mund Kieferheilkd Zentralbl,1975;63(4):339.
  • 9[9]Kroon FH, Mathisson M, Cordey JR, et al. The use of miniplates in mandibular fractures. an in-vitro study. J Craniomaxillofac Surg,1991;19(5):199.
  • 10[10]Assael Leon A. Treatment of mandibular angle fractures: Plate and screw fixation. J Oral Maxillofac Surg,1994;52(7):757.

二级参考文献3

  • 1Chen J,J Biomech Eng,1994年,116卷,5期,401页
  • 2Tanne K,Eur J Orthod,1993年,15卷,6期,527页
  • 3施德广,董世纯,徐莘香,卢学敏.电测法在人体新鲜骨骼应变测量中的应用[J]中国生物医学工程学报,1985(03).

共引文献49

同被引文献92

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部