期刊文献+

水热法制备片状花簇Co_3O_4微纳结构超疏水表面及其性能 被引量:3

Hydrothermal Preparation and Properties of Flaky-cluster Co_3O_4 Super-hydrophobic Surface with Micro/Nano-sized Microstructure
在线阅读 下载PDF
导出
摘要 采用水热法在铝片基底表面成功制备了片状花簇Co3O4超疏水表面,利用X射线衍射和扫描电镜研究了前驱体及终端产物的成分结构和表面微观形貌;探讨了水热反应时间对Co3O4表面微观形貌结构的影响,详细分析了微观结构随反应时间的演变过程;结合Cassi-Baxter复合模型分析了Co3O4超疏水表面的润滑性能;利用强压水柱对Co3O4超疏水表面进行了抗冲击稳定性试验。结果表明,反应时间为10h时得到的片状花簇Co3O4超疏水表面的性能最佳,并具有良好的抗水冲击性能。 Flaky-cluster Co3O4super-hydrophobic surface was successfully prepared on on aluminum substrate via hydrothermal method.The phase composition and surface morphology of the precursor and terminal product were detected by X-ray diffraction and scanning electron microscopy.The effect of reaction time on Co3O4 surface morphology was investigated,and microstructure evolution with reaction time was analyzed in details.The lubrication performance of Co3O4super-hydrophobic surfaces were analyzed with Cassie-Baxter composite model.Finally,the impact resistant stability of Co3O4super-hydrophobic surface was tested with high pressure water column.The results show that flaky-cluster Co3O4super-hydrophobic surface prepared by 10 hreaction has the best super-hydrophobic performance and good water impact resistant stability.
出处 《稀有金属与硬质合金》 CAS CSCD 北大核心 2015年第1期39-45,共7页 Rare Metals and Cemented Carbides
关键词 水热法 片状花簇Co3O4超疏水表面 微纳结构 性能 制备 hydrothermal method flaky-cluster Co3O4 super-hydrophobic surface micro/nano-sized micro-structure property preparation
  • 相关文献

参考文献7

二级参考文献114

  • 1郭志光,周峰,刘维民.溶胶凝胶法制备仿生超疏水性薄膜[J].化学学报,2006,64(8):761-766. 被引量:45
  • 2赵宁,卢晓英,张晓艳,刘海云,谭帅霞,徐坚.超疏水表面的研究进展[J].化学进展,2007,19(6):860-871. 被引量:80
  • 3Ma, M. L.; Hill, R. M. Curr. Opin. Colloid Interface Sci., 2006, 11:193.
  • 4Sun, T. L.; Feng, L.; Gao, X. F.; Jiang, L. Accounts Chem. Res., 2005, 38:644.
  • 5Li, X. M.; Reinhoudt, D.; Crego-Calama, M. Chem. Soc. Rev., 2007, 36:1350.
  • 6Wang, S. T.; Jiang, L. Adv. Mater., 2007, 19:3423.
  • 7Barthlott, W.; Neinhuis, C.; Cutler, D.; Ditsch, F.; Meusel, I.; Theisen, I.; Wilhelmi, H. Bot. J. Linn. Soc., 1998, 126:237.
  • 8Fang, Y.; Sun, G.; Cong, Q.; Chen, G. H.; Ren, L. Q. J. Bion. Eng., 2008, 5:127.
  • 9Gao, X. F.; Jiang, L. Nature, 2004, 432:36.
  • 10Neinhuis, C.; Barthlott, W. Ann. Bot., 1997, 79:667.

共引文献144

同被引文献36

  • 1Lu J Z,Luo K Y,Zhang Y K.Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel[J].Acta Materialia,2010.58(16):5534-5362.
  • 2Edalati K,Toh S,Iwaoka H,et al.Microstructural characteristics of tungsten-base nanocomposites produced from micropowders by high-pressure torsion[J].Acta Materialia,2012.60(9):3885-3893.
  • 3Lee S,Edalati K.Microstructures and mechanical properties of pure V and Mo processed by high-pressure torsion[J].Materials Transactions,2010.51(7):1072-1079.
  • 4Valiev R Z,Langdon T G.Principles of equal-channel angular pressing as a processing tool for grain refinement[J].Progress in Materials Science,2006.51(7):881-981.
  • 5Harai Y,Ito Y,Horita Z.High-pressure torsion using ring specimens.Scripta Materialia,2008.58(6):469-472.
  • 6Guan S K,Ren Z W,Gao J H,et al.In vitro degradation of ultrafine grained Mg-Zn-Ca alloy by high-pressure torsion in simulated body fluid[J].Materials Science Forum,2012.706-709:504-509.
  • 7卢沛.塑性变形对304不锈钢应力腐蚀性能影响的试验研究[D].浙江:浙江工业大学,2008.
  • 8Zhang Z,Zhou F,Lavernia E J.On the analysis of grain size in bulk nanocrystalline materials via X-ray diffraction[J].Metallurgical and Materials Transactions A,2003.34A(6):1349-1355.
  • 9Mathaudhu S N,Hartwig K T,Kecskes L J.Microstructures and recrystallization behavior of severely hot-deformed tungsten[J].Materials Science and Engineering A,2009.503(1-2):28-31.
  • 10郑建勇,钟明强,冯杰.基于超疏水原理的自清洁表面研究进展及产业化状况[J].化工进展,2010,29(2):281-284. 被引量:22

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部