摘要
针对由多个相互耦合的闭环子系统构成的复杂多体系统,提出了一种基于可重用子系统模型的高效动力学建模方法。根据复杂多体系统的拓扑结构划分子系统,求解子系统的等效质量矩阵和等效力向量,根据子系统间的拓扑关系,得到整个多体系统的等效质量矩阵和等效力向量。结果表明,无论系统的自由度多大,动力学模型中矩阵的维数始终为6×6,避免了求解大规模运动方程。当系统中包含重复的子系统时,子系统模型可多次使用。该方法易于程式化建模,且当系统的结构和参数发生变化时,动力学模型便于修改。对多级剪式机构的动力学建模及仿真验证了方法的正确性。
An efficient dynamic modeling method for the complex multibody system with intercoupled closed-loop subsystems is put forward based on the reusable subsystem model.The complex multibody system is divided into subsystems according to the topological structure,and the effective inertia matrices and force vectors of subsystems are derived.The effective inertia matrix and force vector of the overall system can be computed according the topological relationship of subsystems.The result shows that,for any degree of feedom of system,the dimensions of matrix in the dynamic model are always 6×6,so the large-scale equation of the motion for multibody system is avoided.The subsystem model can be used repeatedly when the same subsystem is included in the system.The modeling method is suitable for programming and the overall model can be updated easily when the structure and the parameters is modified.An example of the multi-scissor-like mechanism validates the proposed method.
出处
《南京理工大学学报》
EI
CAS
CSCD
北大核心
2013年第5期705-709,715,共6页
Journal of Nanjing University of Science and Technology
基金
国家自然科学基金(50875044)
南京工程学院创新基金(CKJ2011014)
关键词
闭环
多体系统
多体动力学
可重用子系统
建模
closep-loops
multibody system
multibody dynamics
reusable subsystem
modeling