摘要
证明了Banach空间序列{E<sub>n</sub>}的l<sub>p</sub>乘积l<sub>p</sub>(E<sub>n</sub>)的连续对偶空间为m<sub>p</sub>(E<sub>n</sub><sup>*</sup>),l<sub>p</sub>(E<sub>n</sub>)为r-凸空间当且仅当l<sub>p</sub>为r-凸空间(0【r≤1).
This paper proved that the continuous dual space of the space l_((p))(E_n) which is the l_((p)) product of the Banach spaces sequence {E_n}is the space m_((p)) (E_n~* ),l_((p)) (E_n)is r-convex space if and only if l_((p)) is r-convex space(0<r≤1).
出处
《辽宁师范大学学报(自然科学版)》
CAS
1992年第2期91-93,共3页
Journal of Liaoning Normal University:Natural Science Edition