期刊文献+

An Easy Algorithm for Solving Radiative Transfer Equation in Clear Atmosphere 被引量:1

An Easy Algorithm for Solving Radiative Transfer Equation in Clear Atmosphere
在线阅读 下载PDF
导出
摘要 An accurate and rapid method for solving radiative transfer equation is presented in this paper. According to the fact that the multiple scattering component of radiance is less sensitive to the error of phase function than the single scattering component is,we calculate the multiple scattering component by using delta-Eddington approximation and the single scattering component by solving radiative transfer equation. On the ground, when multiple sattering component is small, for example, when the total optical depth T is small, the accurate radiance can be obtained with this method. For the need of the space remote sensing, the upward radiance at the top of the atmosphere is mainly studied, and an approximate expression is presented to correct the multiple scattering component. Compared with the more precise Gauss-Seidel method.the results from this method show an accuracy of better than 10% when zenith angle 0 < 50 掳 and T < 1. The computational speed of this method is, however, much faster than that of Gauss-Seidel method. An accurate and rapid method for solving radiative transfer equation is presented in this paper. According to the fact that the multiple scattering component of radiance is less sensitive to the error of phase function than the single scattering component is,we calculate the multiple scattering component by using delta-Eddington approximation and the single scattering component by solving radiative transfer equation. On the ground, when multiple sattering component is small, for example, when the total optical depth T is small, the accurate radiance can be obtained with this method. For the need of the space remote sensing, the upward radiance at the top of the atmosphere is mainly studied, and an approximate expression is presented to correct the multiple scattering component. Compared with the more precise Gauss-Seidel method.the results from this method show an accuracy of better than 10% when zenith angle 0 < 50 掳 and T < 1. The computational speed of this method is, however, much faster than that of Gauss-Seidel method.
出处 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1992年第4期483-490,共8页 大气科学进展(英文版)
  • 相关文献

同被引文献95

引证文献1

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部