期刊文献+

Financial Data Modeling by Using Asynchronous Parallel Evolutionary Algorithms

Financial Data Modeling by Using Asynchronous Parallel Evolutionary Algorithms
在线阅读 下载PDF
导出
摘要 In this paper, the high-level knowledge of financial data modeled by ordinary differential equations (ODEs) is discovered in dynamic data by using an asynchronous parallel evolutionary modeling algorithm (APHEMA). A numerical example of Nasdaq index analysis is used to demonstrate the potential of APHEMA. The results show that the dynamic models automatically discovered in dynamic data by computer can be used to predict the financial trends. In this paper, the high-level knowledge of financial data modeled by ordinary differential equations (ODEs) is discovered in dynamic data by using an asynchronous parallel evolutionary modeling algorithm (APHEMA). A numerical example of Nasdaq index analysis is used to demonstrate the potential of APHEMA. The results show that the dynamic models automatically discovered in dynamic data by computer can be used to predict the financial trends.
出处 《Wuhan University Journal of Natural Sciences》 CAS 2003年第S1期239-242,共4页 武汉大学学报(自然科学英文版)
关键词 financial data mining asynchronous parallel algorithm knowledge discovery evolutionary modeling financial data mining asynchronous parallel algorithm knowledge discovery evolutionary modeling
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部