期刊文献+

Circular β ensembles,CMV representation,characteristic polynomials 被引量:1

Circular β ensembles,CMV representation,characteristic polynomials
原文传递
导出
摘要 In this note we first briefly review some recent progress in the study of the circular β ensemble on the unit circle,where β > 0 is a model parameter.In the special cases β = 1,2 and 4,this ensemble describes the joint probability density of eigenvalues of random orthogonal,unitary and sympletic matrices,respectively.For general β,Killip and Nenciu discovered a five-diagonal sparse matrix model,the CMV representation.This representation is new even in the case β = 2;and it has become a powerful tool for studying the circular β ensemble.We then give an elegant derivation for the moment identities of characteristic polynomials via the link with orthogonal polynomials on the unit circle. In this note we first briefly review some recent progress in the study of the circular β ensemble on the unit circle, where β > 0 is a model parameter. In the special cases β = 1,2 and 4, this ensemble describes the joint probability density of eigenvalues of random orthogonal, unitary and sympletic matrices, respectively. For general β, Killip and Nenciu discovered a five-diagonal sparse matrix model, the CMV representation. This representation is new even in the case β = 2; and it has become a powerful tool for studying the circular β ensemble. We then give an elegant derivation for the moment identities of characteristic polynomials via the link with orthogonal polynomials on the unit circle.
出处 《Science China Mathematics》 SCIE 2009年第7期1467-1477,共11页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No.10671176)
关键词 characteristic polynomials circular β ensembles CMV representation moment identity 15A52 characteristic polynomials circular β ensembles CMV representation moment identity
  • 相关文献

参考文献19

  • 1P. J Forrester,J. P Keating.Singularity Dominated Strong Fluctuations for Some Random Matrix Averages[J]. Communications in Mathematical Physics . 2004 (1)
  • 2J. P. Keating,N. C. Snaith.Random Matrix Theory and ζ(1/2+it)[J]. Communications in Mathematical Physics . 2000 (1)
  • 3Diaconis P.Patterns in eigenvalues: the 70th Josiah Williard Gibbs lecture. Bulletin of the American Mathematical Society . 2003
  • 4Okounkov A.On N-point correlations in the log-gas at rational temperature. .
  • 5Johansson K.On Szegs formula for Toeplitz determinants and generalizations. Bulletin des Sciences Mathematiques . 1988
  • 6Forrester P J,Keating J P.Singularity dominated strong uctuations for some random matrix averages. Communications in Mathematical Physics . 2004
  • 7Diaconis P,Gamburd A.Random matrices,magic squares and matching polynomials. Electron J Comb . 2004
  • 8Haake F,Kus M,Sommers H J et al.Secular determinant of random unitary matrices. Journal of Physics A Mathematical and General . 1996
  • 9Forrester P J,Rains E M.Jacobians and rank 1 perturbations relating to unitary Hessenberg matrices. International Mathematics Research Notices .
  • 10Killip R.Gaussian uctuations for β ensembles. International Mathematics Research Notices . 2008

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部