期刊文献+

基于遗传算法和神经网络的企业核心竞争力评价模型研究 被引量:6

Research on Enterprise Core Competitive Power Evaluation Model Based on Genetic Algorithm and Neural Network
在线阅读 下载PDF
导出
摘要 结合遗传算法与BP神经网络以航天二部为例,建立了其核心竞争力评价模型,该模型利用遗传算法提高了网络收敛的效率,克服了传统的神经网络训练时间长、易陷入局部极值的缺点,保持算法结果的全局最优。以一个算例从验证的角度说明该模型对于评价航天二部核心竞争力具有可行性以及较高的精度。 Taking the second research academy of China Aerospace Science and Industry Corp. as an example,an evaluation model of core competitive power was established by genetic algorithm and BP neural network.The model can improve the convergence efficiency of neural network,conquer the shortcomings of long training and local optimum,achieve whole optimum of algorithm results.A calculation sample was pulled in to illustrate the feasibility and precision of the model from the verified perspective.
出处 《兵工学报》 EI CAS CSCD 北大核心 2009年第S1期114-118,共5页 Acta Armamentarii
关键词 遗传算法 BP神经网络 核心竞争力 航天二部 genetic algorithm BP neural network core competitive power second research academy of China Aerospace Science and Industry Corp.
  • 相关文献

参考文献6

  • 1蚩志锋,闫珍珠,黄彪.基于遗传算法与BP算法的水质评价模型[J].重庆科技学院学报(自然科学版),2009,11(1):122-124. 被引量:8
  • 2徐昕,贺汉根.神经网络增强学习的梯度算法研究[J].计算机学报,2003,26(2):227-233. 被引量:22
  • 3F Zorriassatine,R S Guh,Parkin R M,Coy J.Integrating noveltydetection,neural networks and conventional tools for patternrecognition in multivariate processes. IMechE proceedings onEngineering Manufacture . 2004
  • 4Castillo O,Cardona R,Melin P.A hybrid approach for automat-ed quality control combining learning vector quantization neuralnetworks and fuzzy logic. International Joint Conference onNeural Networks . 2002
  • 5Eberhart R C,Donbbins R W.Neural Network PC Tools : A Practical Guide. . 1990
  • 6Anurag More,M. C Deo.Forecasting wind with neural networks. Marine Structure . 2003

二级参考文献22

  • 1Anurag More, M. C. Deo. Forecasting Wind with Neural Networks[J].Marine Structure, 2003(16) : 35-49.
  • 2Eberhart R C.Neural Network PC Tools[M].[S.L.]Academic Press, 1990.
  • 3Baker J E.Reducing Bias and Inefficiency In The Selection Algorithm [C]. Proc. ICGA2, 1987:14-21.
  • 4李自荣.南湾水库水质状况调查及治理对策[J].水利渔业,2007,27(5):65-66. 被引量:5
  • 5Baird L C. Residual algorithms: Reinforcement learning with function approximation. In: Proceedings of the 12th International Conference on Machine Learning (ICML95), Tahoe City, California, USA, 1995. 30~37
  • 6Rumelhart D E et al. Learning internal representations by error propagation. In: Rumelhart D E et al, eds. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol.1,Cambridge, MA: MIT Press,1986. 318~362
  • 7Cybenko G. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems, 1989, 2: 303~314
  • 8Baird L C, Moore A. Gradient descent for general reinforcement learning. In: Kearns M S, Solla S A, Cohn D A eds. Advances in Neural Information Processing Systems 11, Cambrige, MA: MIT Press, 1999. 968~974
  • 9Bertsekas D P, Tsitsiklis J N. Gradient convergence in gradient methods with errors. SIAM Journal on Optimization, 2000, 10(3): 627~642
  • 10Heger M. The loss from imperfect value functions in expectation-based and minimax-based tasks. Machine Learning, 1996, 22(1): 197~225

共引文献28

同被引文献64

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部