摘要
BACKGROUND:Organ fibrosis has been viewed as one of the major medical problems, which can lead to progressive dysfunction of the liver, lung, kidney, skin, heart, and eventually death of patients. Fibrosis is initiated by a variety of pathological, physiological, biochemical, and physical factors. Regardless of their different etiologies, they all share a common pathogenetic process: excessive activation of the key profibrotic cytokine, transforming growth factor-β (TGF-β). Peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated transcription factor of the nuclear receptor superfamily, has received particular attention in recent years, because the activation of PPARγ by both natural and synthetic agonists could effectively inhibit TGF-β-induced profibrotic effects in many organs. DATA SOURCES: The English-language medical databases, PubMed, Elsevier and SpringerLink were searched for articles on PPARγ, TGF-β, and fibrosis, and related topics. RESULTS: TGF-β is recognized as a key profibrotic cytokine. Excessive activation of TGF-β increases synthesis of extracellular matrix proteins and decreases their degradation, associated with a gradual destruction of normal tissue architecture and function, whereas PPARγ agonists inhibit TGF-β signal transduction and are effective antifibrogenic agents in many organs including the liver, lung, kidney, skin and heart. CONCLUSIONS: The main antifibrotic activity of PPARγ agonists is to suppress the TGF-β signaling pathway by so-called PPARγ-dependent effect. In addition, PPARγ agonists, especially 15d-PGJ2, also exert potentially antifibrotic activity independent of PPARγ activation. TGF-β1/Smads signaling not only plays many essential roles in multiple developmental processes, butalso forms cross-talk networks with other signal pathways, and their inhibition by PPARγ agonists certainly affects the cytokine networks and causes non-suspected side-effects. Anti-TGF-β therapies with PPARγ agonists may have to be carefully tailored to be tissue-and target gene-specific to minimize side-effects, indicating a great challenge to the medical research at present.
BACKGROUND:Organ fibrosis has been viewed as one of the major medical problems, which can lead to progressive dysfunction of the liver, lung, kidney, skin, heart, and eventually death of patients. Fibrosis is initiated by a variety of pathological, physiological, biochemical, and physical factors. Regardless of their different etiologies, they all share a common pathogenetic process: excessive activation of the key profibrotic cytokine, transforming growth factor-β (TGF-β). Peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated transcription factor of the nuclear receptor superfamily, has received particular attention in recent years, because the activation of PPARγ by both natural and synthetic agonists could effectively inhibit TGF-β-induced profibrotic effects in many organs. DATA SOURCES: The English-language medical databases, PubMed, Elsevier and SpringerLink were searched for articles on PPARγ, TGF-β, and fibrosis, and related topics. RESULTS: TGF-β is recognized as a key profibrotic cytokine. Excessive activation of TGF-β increases synthesis of extracellular matrix proteins and decreases their degradation, associated with a gradual destruction of normal tissue architecture and function, whereas PPARγ agonists inhibit TGF-β signal transduction and are effective antifibrogenic agents in many organs including the liver, lung, kidney, skin and heart. CONCLUSIONS: The main antifibrotic activity of PPARγ agonists is to suppress the TGF-β signaling pathway by so-called PPARγ-dependent effect. In addition, PPARγ agonists, especially 15d-PGJ2, also exert potentially antifibrotic activity independent of PPARγ activation. TGF-β1/Smads signaling not only plays many essential roles in multiple developmental processes, butalso forms cross-talk networks with other signal pathways, and their inhibition by PPARγ agonists certainly affects the cytokine networks and causes non-suspected side-effects. Anti-TGF-β therapies with PPARγ agonists may have to be carefully tailored to be tissue-and target gene-specific to minimize side-effects, indicating a great challenge to the medical research at present.