期刊文献+

二阶超线性哈密顿系统周期解的存在性

Existence and Multipilicity of Periodic Solutions for Second-Order Superlinear Hamiltonian Systems
在线阅读 下载PDF
导出
摘要 研究二阶哈密顿系统-ü(t)+[-K(t,u(t))+W(t,u(t))]=0周期解的存在性及多重性,通过使用山路定理,得到了当W为超线性时,系统无穷多个周期序列解的存在性。 We discuss the second-order Hamiltonian system-ü(t)+[-K(t,u(t))+W(t,u(t))]=0,and by using Mountain Pass theorem,obtain an unbounded sequence of T-periodic solutions when W is superlinear.
机构地区 河海大学理学院
出处 《济南大学学报(自然科学版)》 CAS 北大核心 2013年第2期208-211,共4页 Journal of University of Jinan(Science and Technology)
基金 国家自然科学基金(10871059)
关键词 二阶哈密顿系统 周期解 山路定理 超二次 second-order Hamiltonian system periodic solution Mountain Pass theorem superlinearity
  • 相关文献

参考文献10

  • 1Rabinowitz P H.Minimax methods in critical point theory with applications to differential equations[].CBMS Regional Conf Series in Math.1986
  • 2Fei Guohua.On periodic solutions of superquadratic Hamiltonian systems[].Electronic Journal of Differential Equations The.2002
  • 3Fei G. H.Maslov-Type Index and Periodic Solution of Asymptotically Linear Hamiltonian Systems Which Are Resonant at Infinity[].Journal of Differential Equations.1995
  • 4J.Su.Nontrivial periodic solution for the asymptotically linear Hamiltonian systems with res-onant at infinity[].JDiferential Equations.1998
  • 5Zhao Fu-kun,Wu xian.Periodic soulutions for a class of non-autonomous second order systems[].Journal of Mathematical Analysis and Applications.2004
  • 6Tang X H,Xiao L.Homoclinic solutions for a class of second-order Hamiltonian systems[].Nonlinear Analysis.2009
  • 7ZOU W,LI W.Infinitely many solutions for Hamiltonian systems[].Differential Equations.2002
  • 8ABBONDANDOLO.A Morse theory for asymptotically linear Ham-iltonian systems,Nonlinear Hamiltonian systems[].Nonlinear A-nal.2000
  • 9ZHAO F,WU X.Existence and multiplicity of periodic solution fornon-autonomous second-order systems with linear nonlinearity[].Nonlinear Analysis.2005
  • 10GUO Y.Nontrivial periodic solutions for asymptotically linear Ham-iltonian systems with resonance[].Differential Equations.2001

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部