摘要
本文采用辛算法数值求解了立方非线性Schrdinger方程的初边值问题.研究了在不同非线性参数下,立方非线性Schrdinger方程的长时间演化的动力学性质,数值结果表明在不同的非线性参数下呈现出了不同的动力学行为,在弱的非线性参数下系统具有周期或准周期运动的椭圆轨道,在中间出现一过渡点后,又出现椭圆轨道,在较强的非线性参数下系统出现同宿轨道,进而出现混沌运动.
This paper adopted symplectic algorithm quantitative value to solve the initial boundary value of the cubic nonlinear Schr dinger equation.It studied the dynamic properties of the equation which experienced a long-time evolvement in different nonlinear parameters,the numerical results showed that there appeared different dynamic behaviors in different nonlinear parameters,the system had a periodic or quasi motions elliptical orbit in the weakly nonlinear parameter,behind the transition point in the middle of the orbit,there appeared an elliptical orbit,in a relatively strong nonlinear parameter,the system tended to become a homoclinic orbit,and then chaotic motion showed up.
出处
《白城师范学院学报》
2012年第5期1-5,共5页
Journal of Baicheng Normal University