期刊文献+

基于空频结合的图像增强的脑肿瘤分割 被引量:4

Brain Tumor Segmentation Based on Spatial-frequency Domain Image Enhancement
在线阅读 下载PDF
导出
摘要 针对脑部核磁共振图像中含有噪音、对比度低及肿瘤边界不连续模糊等造成肿瘤难以准确分割的问题,提出了一种基于空频域图像增强的脑肿瘤分割算法.首先,采用空频域相结合的增强方法对图像进行增强处理.该方法利用基于邻域的方法,结合了空间域增强算法与基于方向滤波器组的频率域增强算法,具有它们优点的同时,克服了前者导致的图像细节模糊的缺陷及后者带来的对比度降低的缺陷.然后,利用液体向量流的分割方法,对增强后的图像进行分割,得到脑肿瘤区域.实验结果表明,本文的增强方法在增强肿瘤边界特征的同时改善了图像的对比度和清晰度,提高了脑肿瘤分割的准确性. In view of the problems that the target border always appears too fuzzy to be detected,a novel method of brain tumor segmentation is proposed based on spatial-frequency domain image enhancement.The method is composed of the spatial and frequency domain enhancing process and the detecting process.In the enhancing process,the directional filter band,neighborhood and histogram equalization are combined to overcome the defect of contrast reduction caused by directional filter and the defect of details vagueness caused by histogram equalization.Then in the detecting process,a method of image segmentation is applied to find the area of the brain tumor.The experiment results show that the enhancing process strengthens the features of tumor greatly,and improves the contrast and definition of the image.
作者 黄靖 杨丰
出处 《光子学报》 EI CAS CSCD 北大核心 2012年第7期850-854,共5页 Acta Photonica Sinica
基金 国家自然科学青年基金(No.81000642) 国家自然科学基金(No.60672115)资助
关键词 磁共振图像 空频域 图像增强 图像分割 Magnetic resonance image Spatial-frequency domain Image enhancement Image segmentation
  • 相关文献

参考文献14

二级参考文献35

共引文献183

同被引文献28

  • 1钱芸,张英杰.水平集的图像分割方法综述[J].中国图象图形学报,2008,13(1):7-13. 被引量:48
  • 2张治国,周越,谢凯.一种基于Mum ford-Shah模型的脑肿瘤水平集分割算法[J].上海交通大学学报,2005,39(12):1955-1958. 被引量:10
  • 3谭利娜,高协平,何胜名,李斐.基于平移不变多小波方法的磁共振去噪研究[J].光子学报,2007,36(8):1552-1556. 被引量:15
  • 4Hofmeijer J, Algra A, Kappelle L J,et al. Predictors of life-threatening brain edema in middle cerebral artery in- faretion [ J]. Cerebrovascular Diseases Basel Switzer- land, 2008, 25 ( 1 ) :176 - 184.
  • 5Kowar M K, Yadav S. Brain tumor detetion and segmen- tation using histogram threshnlding [ J ] . International Journal of Engineering and Advanced Technology,2012, 1(4): 16-20.
  • 6Wang T, Cheng I, Basu A. Fluid veetor flow and applo- caiions in brain tumor segementation[ J ]. IEEE Transac- tions on Medical Engineering,2009,53(3) : 882 - 893.
  • 7Corso J J, Sharon E, Dube S. Efficient multilevel brain tumor segmentation with integrated bayesian model clas- sification[ J]. IEEE Transactions on Medical Imaging, 2008,27(5) : 629 -640.
  • 8Jobin-Christ M C, Parvathi R M S. Segmentation of medical image using K-means clustering and marker con- trolled watershed algorithm [ J ]. European Journal of Sci- entific Research, 2012,71(2) :190 - 194.
  • 9Grau V, Mewes A U, Alcaniz M, et al. Improved water- shed transform for medical image segmentation using pri- or information[ J]. IEEE Transactions on Medical Ima- ging, 2004,23(4) : 447 -458.
  • 10Karantzalos K, Argialas D. Improvingedge detection and watershed segmentation with anisotropic diffusion and morphological levellings [ J ]. International Journal of Remote Sensing, 2006, 27(24) : 5427 -5434.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部