期刊文献+

C-L METHOD AND ITS APPLICATION TO ENGINEERING NONLINEAR DYNAMICAL PROBLEMS 被引量:1

在线阅读 下载PDF
导出
摘要 The C-L method was generalized from Liapunov-Schmidt reduction method, combined with theory of singularities, for study of non-autonomous dynamical systems to obtain the typical bifurcating response curves in the system parameter spaces. This method has been used, ar an example, to analyze the engineering nonlinear dynamical problems by obtaining the bifurcation programs and response curves which are useful in developing techniques of control to subharmonic instability of large rotating machinery. The C-L method was generalized from Liapunov-Schmidt reduction method, combined with theory of singularities, for study of non-autonomous dynamical systems to obtain the typical bifurcating response curves in the system parameter spaces. This method has been used, ar an example, to analyze the engineering nonlinear dynamical problems by obtaining the bifurcation programs and response curves which are useful in developing techniques of control to subharmonic instability of large rotating machinery.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第2期144-153,共10页 应用数学和力学(英文版)
基金 theNationalNaturalScienceFoundationofChina ( 1 9990 5 1 0 ) theNationalKeyBasicResearchSpecialFund (G1 9980 2 0 3 1 6)
关键词 C-L method nonlinear dynamics nonlinear oscillations bifurcation and chaos C-L method nonlinear dynamics nonlinear oscillations bifurcation and chaos
  • 相关文献

参考文献1

二级参考文献3

  • 1陈予恕,力学学报,1988年,20卷,6期
  • 2陈予恕,振动工程学报,1987年,1期
  • 3陈予恕

共引文献3

同被引文献29

  • 1CHEN,Li-qun(陈立群).CHAOS IN PERTURBED PLANAR NON-HAMILTONIAN INTEGRABLE SYSTEMS WITH SLOWLY-VARYINGANGLE PARAMETERS[J].Applied Mathematics and Mechanics(English Edition),2001,22(11):1301-1305. 被引量:1
  • 2Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields[M]. New York: Springer, 1983.
  • 3Wiggins S. Introduction to Applied Nonlinear Dynamical Systems and Chaos [ M ]. New York. Springer, 1990.
  • 4Nayfeh A H, Balachandran B. Applied Nonlinear Dynamics, Analytical, Computational, and Experimental Methods[M]. New York: Wiley, 1995.
  • 5Li J B, Dai H H. On the Study of Singular Nonlinear Traveling Wave Equation: Dynamical System Approach[M]. Beijing: Science Press, 2005.
  • 6Vakakis A F. Exponentially small splittings of manifolds in a rapidly forced Duffmg system, Letter to the editor[J]. Journal of Sound and Vibration, 1994, 170( 1 ) : 119-129.
  • 7Vakakis A F, Azeez M F A. Analytic approximation of the homoclinic orbits of the Lorenz system at σ = 10, b = 8/3 and p = 13. 926… [J]. Nonlinear Dynamics, 1998, 15(3): 245-257.
  • 8Xu Z, Chan H S Y, Chung K W. Separatrices and limit cycles of strongly nonlinear oscillators by the perturbation-incremental method[J]. Nonlinear Dynamics, 1996,11 (3) : 213-233.
  • 9Chan H S Y, Chung K W, Xu Z. Stability and bifurcations of limit cycles by the perturbationincremental method[ J]. Journal of Sound and Vibration, 1997, 206(4) : 589-604.
  • 10Belhaq M. Predicting homoclinic bifurcations in planar autonomous systems [ J ]. Nonlinear Dynamics, 1999, 18(4): 303-310.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部