摘要
The C-L method was generalized from Liapunov-Schmidt reduction method, combined with theory of singularities, for study of non-autonomous dynamical systems to obtain the typical bifurcating response curves in the system parameter spaces. This method has been used, ar an example, to analyze the engineering nonlinear dynamical problems by obtaining the bifurcation programs and response curves which are useful in developing techniques of control to subharmonic instability of large rotating machinery.
The C-L method was generalized from Liapunov-Schmidt reduction method, combined with theory of singularities, for study of non-autonomous dynamical systems to obtain the typical bifurcating response curves in the system parameter spaces. This method has been used, ar an example, to analyze the engineering nonlinear dynamical problems by obtaining the bifurcation programs and response curves which are useful in developing techniques of control to subharmonic instability of large rotating machinery.
基金
theNationalNaturalScienceFoundationofChina ( 1 9990 5 1 0 )
theNationalKeyBasicResearchSpecialFund (G1 9980 2 0 3 1 6)