摘要
Traditional methods for performance prediction of a turbomachinery are usually based on certain computations from a set of data obtained in limited experiment measurements of the machine, or the machinemodels. Since the computational (mathematical) models used in such performance prediction are often crude, most of the predicted results are only correct in very small ranges around the known data points. Beyond the limited ranges, the accuracy of the resultant predictions decrease abruptly. Therefore, an alternative approach, neural network technique, is studied for performance prediction of turbomachinery. The new approach has been applied to two typical performance prediction cases to verify its feasibility and reliability.
Traditional methods for performance prediction of a turbomachinery are usually based on certain computations from a set of data obtained in limited experiment measurements of the machine, or the machinemodels. Since the computational (mathematical) models used in such performance prediction are often crude, most of the predicted results are only correct in very small ranges around the known data points. Beyond the limited ranges, the accuracy of the resultant predictions decrease abruptly. Therefore, an alternative approach, neural network technique, is studied for performance prediction of turbomachinery. The new approach has been applied to two typical performance prediction cases to verify its feasibility and reliability.